This section is defined by these two equation :
3x2−y2+z2=13x^2-y^2+z^2=13x2−y2+z2=1
y+2z=4y+2z=4y+2z=4
Let's reduce the number of variables :
y=4−2zy=4-2zy=4−2z
3x2−(4−2z)2+z2=13x^2-(4-2z)^2+z^2=13x2−(4−2z)2+z2=1
3x2−3z2+16z−16=13x^2 -3z^2+16z-16=13x2−3z2+16z−16=1
Let's write an expression of a full square for zzz :
3x2−(3z2−2×3z×83+643)=−1333x^2 - (3z^2-2\times \sqrt{3}z \times \frac{8}{\sqrt{3}}+\frac{64}{3})=-\frac{13}{3}3x2−(3z2−2×3z×38+364)=−313
3(z−83)2−3x2=1333(z-\frac{8}{3})^2-3x^2=\frac{13}{3}3(z−38)2−3x2=313
We clearly see that it is an equation of a hyperbola and therefore the answer to the question is NO, it is not an ellipse.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments