Question #135546

The distance from the point P(1,3,2) to the line through (1,0,0), and (1,2,0) is given by ?


1
Expert's answer
2020-09-30T19:56:10-0400

Let M1(1, 0, 0) and M2(1, 2, 0).

We should find

d=PM1×ssd=\frac{|\overrightarrow{PM_1}×\overrightarrow{s}|}{|\overrightarrow{s}|} , where s=M1M2={11,20,00}={0,2,0}\overrightarrow{s}=\overrightarrow{M_1M_2}=\{ 1-1, 2-0, 0-0\}=\{ 0, 2, 0\} and PM1={11,03,02}={0,3,2}\overrightarrow{PM_1}=\{ 1-1, 0-3, 0-2\}=\{ 0, -3, -2\} .

PM1×s=ijk032020=i(0+4)j(00)+k(00)=4i={4,0,0}\overrightarrow{PM_1}×\overrightarrow{s}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j}&\overrightarrow{k} \\ 0 & -3&-2\\ 0&2&0 \end{vmatrix}=\overrightarrow{i}(0+4)-\overrightarrow{j}(0-0)+\overrightarrow{k}(0-0)=4\overrightarrow{i}=\{ 4, 0, 0\} .

Then d=42+02+0202+22+02=42=2d=\frac{\sqrt{4^2+0^2+0^2}}{\sqrt{0^2+2^2+0^2}}=\frac{4}{2}=2 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS