The distance from the point P(1,3,2) to the line through (1,0,0), and (1,2,0) is given by ?
Let M1(1, 0, 0) and M2(1, 2, 0).
We should find
"d=\\frac{|\\overrightarrow{PM_1}\u00d7\\overrightarrow{s}|}{|\\overrightarrow{s}|}" , where "\\overrightarrow{s}=\\overrightarrow{M_1M_2}=\\{ 1-1, 2-0, 0-0\\}=\\{ 0, 2, 0\\}" and "\\overrightarrow{PM_1}=\\{ 1-1, 0-3, 0-2\\}=\\{ 0, -3, -2\\}" .
"\\overrightarrow{PM_1}\u00d7\\overrightarrow{s}=\\begin{vmatrix}\n \\overrightarrow{i} & \\overrightarrow{j}&\\overrightarrow{k} \\\\\n 0 & -3&-2\\\\\n0&2&0\n\\end{vmatrix}=\\overrightarrow{i}(0+4)-\\overrightarrow{j}(0-0)+\\overrightarrow{k}(0-0)=4\\overrightarrow{i}=\\{ 4, 0, 0\\}" .
Then "d=\\frac{\\sqrt{4^2+0^2+0^2}}{\\sqrt{0^2+2^2+0^2}}=\\frac{4}{2}=2" .
Comments
Leave a comment