8.8 Let L 1 L_1 L 1 be defined by x ⃗ = w 0 ⃗ + s u ⃗ , s ∈ R \vec{x} = \vec{w_0} + s\vec{u}, s \in \R x = w 0 + s u , s ∈ R and L 2 L_2 L 2 defined by y ⃗ = w 1 ⃗ + t v ⃗ , t ∈ R . \vec{y} = \vec{w_1} + t\vec{v}, t \in \R. y = w 1 + t v , t ∈ R . We may rewrite these equations in a parametric form
{ x 1 = w 0 , 1 + s u 1 , x 2 = w 0 , 2 + s u 2 , { y 1 = w 1 , 1 + t v 1 , y 2 = w 1 , 2 + t v 2 . \begin{cases}x_1=w_{0,1}+su_1,\\x_2=w_{0,2}+su_2,\end{cases}
\begin{cases}y_1=w_{1,1}+tv_1,\\y_2=w_{1,2}+tv_2\end{cases} . { x 1 = w 0 , 1 + s u 1 , x 2 = w 0 , 2 + s u 2 , { y 1 = w 1 , 1 + t v 1 , y 2 = w 1 , 2 + t v 2 .
We should show that ∃ k ∈ R : u ⃗ = k v ⃗ \exists k\in \R: \, \vec{u}=k\vec{v} ∃ k ∈ R : u = k v , that is,
u 1 = k v 1 , u 2 = k v 2 . u_1 = kv_1, u_2=kv_2. u 1 = k v 1 , u 2 = k v 2 .
Let us determine the slope of the lines.
k 1 = x 2 − w 0 , 2 x 1 − w 0 , 1 = s u 2 s u 1 = u 2 u 1 , k_1 = \dfrac{x_2-w_{0,2}}{x_1-w_{0,1}} = \dfrac{su_2}{su_1} = \dfrac{u_2}{u_1}, k 1 = x 1 − w 0 , 1 x 2 − w 0 , 2 = s u 1 s u 2 = u 1 u 2 ,
k 2 = y 2 − w 1 , 2 y 1 − w 1 , 1 = t v 2 t v 1 = v 2 v 1 . k_2 = \dfrac{y_2-w_{1,2}}{y_1-w_{1,1}} = \dfrac{tv_2}{tv_1} = \dfrac{v_2}{v_1}. k 2 = y 1 − w 1 , 1 y 2 − w 1 , 2 = t v 1 t v 2 = v 1 v 2 .
If the two lines are parallel, then k 1 = k 2 k_1=k_2 k 1 = k 2 , therefore
u 2 u 1 = v 2 v 1 . \dfrac{u_2}{u_1} = \dfrac{v_2}{v_1}. u 1 u 2 = v 1 v 2 .
This formula means that vectors u ⃗ \vec{u} u and v ⃗ \vec{v} v are proportional, therefore ∃ k ∈ R : u ⃗ = k v ⃗ . \exists k\in \R: \, \vec{u}=k\vec{v}. ∃ k ∈ R : u = k v .
8.2 Let the equation of plane be A x + B y + C z + D = 0 A x + B y + C z + D = 0 A x + B y + C z + D = 0 . Two planes are parallel if
A 1 A 2 = B 1 B 2 = C 1 C 2 = k . \dfrac{A_1}{A_2} = \dfrac{B_1}{B_2} = \dfrac{C_1}{C_2} = k. A 2 A 1 = B 2 B 1 = C 2 C 1 = k .
So we get
A − 2 = B 4 = C − 5 = k . \dfrac{A}{-2} = \dfrac{B}{4} = \dfrac{C}{-5} = k. − 2 A = 4 B = − 5 C = k .
Let k = 1 k=1 k = 1 , because rescale the equation to get k ( A x + B y + C z + D ) = 0. k( A x + B y + C z + D )= 0. k ( A x + B y + C z + D ) = 0. So A = − 2 , B = 4 , C = − 5. A=-2, \; B=4,\; C=-5. A = − 2 , B = 4 , C = − 5.
The plane passes through the point ( 2 , 4 , − 3 ) (2, 4, −3) ( 2 , 4 , − 3 ) , so we obtain
− 2 ⋅ 2 + 4 ⋅ 4 − 5 ⋅ ( − 3 ) + D = 0 , -2\cdot2+4\cdot4 -5\cdot (-3)+D = 0, − 2 ⋅ 2 + 4 ⋅ 4 − 5 ⋅ ( − 3 ) + D = 0 ,
therefore D = − 27. D=-27. D = − 27.
The equation of the plane is − 2 x + 4 y − 5 z − 27 = 0. -2x+4y-5z-27=0. − 2 x + 4 y − 5 z − 27 = 0.
8.3 Let the equation of the line be r ⃗ = r 0 ⃗ + t a ⃗ , \vec{r}=\vec{r_0} + t\vec{a}, r = r 0 + t a ,
where r 0 ⃗ = ( 2 , 5 , 3 ) \vec{r_0} = (2,5,3) r 0 = ( 2 , 5 , 3 ) is radius vector of point ( 2 , 5 , 3 ) . (2,5,3). ( 2 , 5 , 3 ) . The plane defined by A x + B y + C z + D = 0 Ax+By+Cz+D=0 A x + B y + C z + D = 0 and line are perpendicular if a ⃗ \vec{a} a is parallel to v ⃗ = ( A , B , C ) , \vec{v}=(A,B,C), v = ( A , B , C ) ,
so we get
a x A = a y B = a z C \dfrac{a_x}{A}=\dfrac{a_y}{B}=\dfrac{a_z}{C} A a x = B a y = C a z ,
therefore
a x 2 = a y − 3 = a z 4 \dfrac{a_x}{2}=\dfrac{a_y}{-3}=\dfrac{a_z}{4} 2 a x = − 3 a y = 4 a z .
We may choose a x = 2 , a y = − 3 , a z = 4. a_x = 2,\; a_y=-3, \; a_z = 4. a x = 2 , a y = − 3 , a z = 4. So the equation of the line may be rewritten in parametric form as
{ x = x 0 + a x t , y = y 0 + a y t , z = z 0 + a z t \begin{cases} x = x_0 + a_xt,\\ y=y_0 + a_yt, \\ z=z_0 + a_zt \end{cases} ⎩ ⎨ ⎧ x = x 0 + a x t , y = y 0 + a y t , z = z 0 + a z t and { x = 2 + 2 t , y = 5 − 3 t , z = 3 + 4 t . \begin{cases} x = 2 +2t,\\ y=5 -3t, \\ z=3 + 4t .\end{cases} ⎩ ⎨ ⎧ x = 2 + 2 t , y = 5 − 3 t , z = 3 + 4 t .
8.4 Let the equation of plane be A x + B y + C z + D = 0 A x + B y + C z + D = 0 A x + B y + C z + D = 0 .
First we determine the equation of the line passing through two given points:
x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 . \dfrac{x-x_1}{x_2-x_1} = \dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}. x 2 − x 1 x − x 1 = y 2 − y 1 y − y 1 = z 2 − z 1 z − z 1 .
Therefore
x − 4 0 − 4 = y + 2 2 + 2 = z − 5 4 − 5 , x − 4 − 4 = y + 2 4 = z − 5 − 1 , \dfrac{x-4}{0-4} = \dfrac{y+2}{2+2}=\dfrac{z-5}{4-5}, \;\;
\dfrac{x-4}{-4} = \dfrac{y+2}{4}=\dfrac{z-5}{-1}, \;\; 0 − 4 x − 4 = 2 + 2 y + 2 = 4 − 5 z − 5 , − 4 x − 4 = 4 y + 2 = − 1 z − 5 , so the line is parallel to vector ( − 4 , 4 , − 1 ) . (-4,4,-1). ( − 4 , 4 , − 1 ) .
As the plane and line are perpendicular. we get
A − 4 = B 4 = C − 1 . \dfrac{A}{-4}=\dfrac{B}{4} = \dfrac{C}{-1}. − 4 A = 4 B = − 1 C .
We may choose A = − 4 , B = 4 , C = − 1. A=-4, \; B=4,\; C=-1. A = − 4 , B = 4 , C = − 1. We know that plane passes through ( − 2 , 3 , 4 ) , (-2,3,4), ( − 2 , 3 , 4 ) , so
− 2 A + 3 B + 4 C + D = 0 , − 2 ⋅ ( − 4 ) + 3 ⋅ 4 + 4 ⋅ ( − 1 ) + D = 0 , -2A+3B+4C+D=0, \;\; -2\cdot(-4) + 3\cdot4 +4\cdot(-1) + D = 0, − 2 A + 3 B + 4 C + D = 0 , − 2 ⋅ ( − 4 ) + 3 ⋅ 4 + 4 ⋅ ( − 1 ) + D = 0 ,
therefore D = − 16. D=-16. D = − 16.
So the equation of the plane is − 4 x + 4 y − z − 16 = 0. -4x+4y-z-16=0. − 4 x + 4 y − z − 16 = 0.
Comments