Question #114075
QUESTION 8 8.1 Let L1 and L2 be lines defined by x = w0 + su, s ∈ R and y = w1 + tv, t ∈ R, respectively. Show that L1and L2 are parallel if and only if u = kv for some k ∈ R. (8) 8.2 Find the plane that passes through the point (2, 4, −3) and is parallel to the plane −2x + 4y − 5z + 6 = 0. (4) 8.3 Find the line that passes through the point (2, 5, 3) and is perpendicular to the plane 2x − 3y + 4z + 7 = 0. (4) 8.4 Find an equation of the plane passing through the point(−2, 3, 4) and is perpendicular to the line passing through the points (4, −2, 5) and (0, 2, 4). (4)
1
Expert's answer
2020-05-06T19:33:18-0400

8.8 Let L1L_1 be defined by x=w0+su,sR\vec{x} = \vec{w_0} + s\vec{u}, s \in \R and L2L_2 defined by y=w1+tv,tR.\vec{y} = \vec{w_1} + t\vec{v}, t \in \R. We may rewrite these equations in a parametric form

{x1=w0,1+su1,x2=w0,2+su2,{y1=w1,1+tv1,y2=w1,2+tv2.\begin{cases}x_1=w_{0,1}+su_1,\\x_2=w_{0,2}+su_2,\end{cases} \begin{cases}y_1=w_{1,1}+tv_1,\\y_2=w_{1,2}+tv_2\end{cases} .

We should show that kR:u=kv\exists k\in \R: \, \vec{u}=k\vec{v}, that is,

u1=kv1,u2=kv2.u_1 = kv_1, u_2=kv_2.


Let us determine the slope of the lines.

k1=x2w0,2x1w0,1=su2su1=u2u1,k_1 = \dfrac{x_2-w_{0,2}}{x_1-w_{0,1}} = \dfrac{su_2}{su_1} = \dfrac{u_2}{u_1},

k2=y2w1,2y1w1,1=tv2tv1=v2v1.k_2 = \dfrac{y_2-w_{1,2}}{y_1-w_{1,1}} = \dfrac{tv_2}{tv_1} = \dfrac{v_2}{v_1}.

If the two lines are parallel, then k1=k2k_1=k_2 , therefore

u2u1=v2v1.\dfrac{u_2}{u_1} = \dfrac{v_2}{v_1}.

This formula means that vectors u\vec{u} and v\vec{v} are proportional, therefore kR:u=kv.\exists k\in \R: \, \vec{u}=k\vec{v}.


8.2 Let the equation of plane be Ax+By+Cz+D=0A x + B y + C z + D = 0. Two planes are parallel if

A1A2=B1B2=C1C2=k.\dfrac{A_1}{A_2} = \dfrac{B_1}{B_2} = \dfrac{C_1}{C_2} = k.

So we get

A2=B4=C5=k.\dfrac{A}{-2} = \dfrac{B}{4} = \dfrac{C}{-5} = k.

Let k=1k=1 , because rescale the equation to get k(Ax+By+Cz+D)=0.k( A x + B y + C z + D )= 0. So A=2,  B=4,  C=5.A=-2, \; B=4,\; C=-5.

The plane passes through the point (2,4,3)(2, 4, −3) , so we obtain

22+445(3)+D=0,-2\cdot2+4\cdot4 -5\cdot (-3)+D = 0,

therefore D=27.D=-27.

The equation of the plane is 2x+4y5z27=0.-2x+4y-5z-27=0.


8.3 Let the equation of the line be r=r0+ta,\vec{r}=\vec{r_0} + t\vec{a},

where r0=(2,5,3)\vec{r_0} = (2,5,3) is radius vector of point (2,5,3).(2,5,3). The plane defined by Ax+By+Cz+D=0Ax+By+Cz+D=0 and line are perpendicular if a\vec{a} is parallel to v=(A,B,C),\vec{v}=(A,B,C),

so we get

axA=ayB=azC\dfrac{a_x}{A}=\dfrac{a_y}{B}=\dfrac{a_z}{C} ,

therefore

ax2=ay3=az4\dfrac{a_x}{2}=\dfrac{a_y}{-3}=\dfrac{a_z}{4} .

We may choose ax=2,  ay=3,  az=4.a_x = 2,\; a_y=-3, \; a_z = 4. So the equation of the line may be rewritten in parametric form as

{x=x0+axt,y=y0+ayt,z=z0+azt\begin{cases} x = x_0 + a_xt,\\ y=y_0 + a_yt, \\ z=z_0 + a_zt \end{cases} and {x=2+2t,y=53t,z=3+4t.\begin{cases} x = 2 +2t,\\ y=5 -3t, \\ z=3 + 4t .\end{cases}


8.4 Let the equation of plane be Ax+By+Cz+D=0A x + B y + C z + D = 0 .

First we determine the equation of the line passing through two given points:

xx1x2x1=yy1y2y1=zz1z2z1.\dfrac{x-x_1}{x_2-x_1} = \dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}.

Therefore

x404=y+22+2=z545,    x44=y+24=z51,    \dfrac{x-4}{0-4} = \dfrac{y+2}{2+2}=\dfrac{z-5}{4-5}, \;\; \dfrac{x-4}{-4} = \dfrac{y+2}{4}=\dfrac{z-5}{-1}, \;\; so the line is parallel to vector (4,4,1).(-4,4,-1).

As the plane and line are perpendicular. we get

A4=B4=C1.\dfrac{A}{-4}=\dfrac{B}{4} = \dfrac{C}{-1}.

We may choose A=4,  B=4,  C=1.A=-4, \; B=4,\; C=-1. We know that plane passes through (2,3,4),(-2,3,4), so

2A+3B+4C+D=0,    2(4)+34+4(1)+D=0,-2A+3B+4C+D=0, \;\; -2\cdot(-4) + 3\cdot4 +4\cdot(-1) + D = 0,

therefore D=16.D=-16.

So the equation of the plane is 4x+4yz16=0.-4x+4y-z-16=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS