The equations of motion with constant acceleration are:
"v(t) = v_0 + a t", "s(t) = s_0 + v_0 t + \\frac{a t^2}{2}"
A) Using the first equation, the velocity function is "v(t) = 10 + 2 t".
B) Using the second equation, displacement function is "s(t) = 5 +10 t + t^2".
C) "v(2) = 10 \\frac{m}{s} + 2 \\frac{m}{s^2}\\cdot 2 s = 14 \\frac{m}{s}" , "s(2) = 5 m + 10\\frac{m}{s} \\cdot 2 s + 1 \\frac{m}{s^2} \\cdot 2^2 s^2 = 29 m".
D) "v(5) = 10\\frac{m}{s} + 2\\frac{m}{s^2} \\cdot 5 s = 20 \\frac{m}{s}" , "s(5) = 5 m + 10\\frac{m}{s} \\cdot 5 s + 1\\frac{m}{s^2} \\cdot 5^2 s^2 = 80 m".
Comments
Values of v0, a, s0 were described in conditions of the question. In C) you substitute t=2 for v(t)=10+2t and get v(2)=14 m/s, substitute t=2 for s(t)=5+10t+t^2 and get s(2)=29 m. In D) you substitute t=5 for v(t)=10+2t and get v(5)=20 m/s, substitute t=5 for s(t)=5+10t+t^2 and get s(5)=80 m.
What are the steps taken to get to this answer?
Leave a comment