Question #95589
2 A short-term economic model assumes that a country's GDP $G$ (in 100 billion Euro) at time
$t$ (in years) can be expressed as a quadratic polynomial $G(t) = At^2 + Bt + C$.
Initially $G$ has a value of $20$. At $1$ year the value of $G$ is $20.5$ and at $2$ years the value
of $G$ is $21$.

\bigskip
Determine the values of the constants $A, B, C$. Is the value of $B$ equal to:

\begin{enumerate}
\item[(a)] $0$,

\item[(b)] $0.5$,

\item[(c)] $1$,

\item[(d)] none of the above?
\end{enumerate}
1
Expert's answer
2019-10-01T09:39:45-0400

G(t)=At2+Bt+CAt t=0G(t)=20soC=20At t=1G(t)=20.5so20.5=A+B+CorA+B=0.5   ........(1)At t =2G(t)=21so,21=4A+2B+Cor4A+2B=1    ........(2)on taking (1) and (2)2A+2B=1    ..........(3)on subtracting equation (3) from (2) we get2A=0 or A=0putting the value of A in equation (1) we get B=0.5we get,A=0B=0.5C=20sovalue of B equals (b)=0.5G(t)=At^2+Bt+C\\At\ t=0\\G(t)=20\\so\\C=20\\At\ t =1\\G(t)=20.5\\so\\20.5=A+B+C\\or\\A+B=0.5\ \ \ ........(1)\\At\ t\ =2\\G(t)=21\\so,\\21=4A+2B+C\\or \\4A+2B=1\ \ \ \ ........(2)\\on\ taking\ (1)\ and\ (2)\\2A+2B=1\ \ \ \ ..........(3)\\on\ subtracting\ equation\ (3)\ from\ (2)\ we\ get\\2A=0\ or\ A=0\\putting\ the\ value\ of\ A\ in\ equation\ (1)\ we\ get\ B=0.5\\ we\ get,\\A=0\\B=0.5\\C=20\\so\\value\ of\ B\ equals \ (b)=0.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS