Find the maximum value of the function "f(x)=x+x^2-x^3" for "x\u22650".
Solution
Find the critical points of the function:
"-3x^2+2x+1=0."
We solve the resulting equation using discriminants
"x_1=\\frac{-2+\\sqrt{16}} {-3\\cdot2}=-\\frac1 3;"
"x_2=\\frac{-2-\\sqrt{16}} {-3\\cdot2}=1."
Option "-\\frac1 3" is not suitable, because "x\u22650".
Now we define the intervals of increasing ("f'(x)>0") and decreasing ("f'(x)<0") functions.by the interval method.
We get that the point "x=1" is the maximum.
"f(1)=1+1^2-1^3=1."
Answer
The maximum value of the function is 1.
Comments
Leave a comment