Question #94176
Find the maximum value of the function f(x) = x + x'2 − x'3
for x ≥ 0
1
Expert's answer
2019-09-10T09:37:34-0400

Find the maximum value of the function f(x)=x+x2x3f(x)=x+x^2-x^3 for x0x≥0.

Solution

Find the critical points of the function:


f(x)=1+2x3x2=0;f'(x)=1+2x-3x^2=0;


3x2+2x+1=0.-3x^2+2x+1=0.

We solve the resulting equation using discriminants


D=224(3)1=16;D=2^2-4\cdot(-3)\cdot1=16;

x1=2+1632=13;x_1=\frac{-2+\sqrt{16}} {-3\cdot2}=-\frac1 3;

x2=21632=1.x_2=\frac{-2-\sqrt{16}} {-3\cdot2}=1.

Option 13-\frac1 3 is not suitable, because x0x≥0.

Now we define the intervals of increasing (f(x)>0f'(x)>0) and decreasing (f(x)<0f'(x)<0) functions.by the interval method.


We get that the point x=1x=1 is the maximum.

f(1)=1+1213=1.f(1)=1+1^2-1^3=1.

Answer

The maximum value of the function is 1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS