Find the maximum value of the function f(x)=x+x2−x3 for x≥0.
Solution
Find the critical points of the function:
f′(x)=1+2x−3x2=0;
−3x2+2x+1=0. We solve the resulting equation using discriminants
D=22−4⋅(−3)⋅1=16;
x1=−3⋅2−2+16=−31;
x2=−3⋅2−2−16=1. Option −31 is not suitable, because x≥0.
Now we define the intervals of increasing (f′(x)>0) and decreasing (f′(x)<0) functions.by the interval method.
We get that the point x=1 is the maximum.
f(1)=1+12−13=1. Answer
The maximum value of the function is 1.
Comments