It has the discontinuities at x = -3 and at x = -2 (also a puncture point)
1) x = -3 is a vertical asymptote because
"\\lim_{x\\to-3}f(x)=\\lim_{x\\to-3}\\frac{2}{x+3}=\\infty"2) x = -2 is not a vertical asymptote because
"\\lim_{x\\to-2}f(x)=\\lim_{x\\to-2}\\frac{2}{x+3}=2"
Let the slant (or a horizontal asymptote in particular) asymptote be
"k=\\lim_{x\\to\\infty}(\\frac{f(x)}{x})=\\lim_{x\\to\\infty}(\\frac{2}{x^2+3x})=\\lim_{x\\to\\infty}(\\frac{\\frac{2}{x^2}}{1+\\frac{3}{x}})=0"
"b=\\lim_{x\\to\\infty}(f(x)-kx)=\\lim_{x\\to\\infty}(\\frac{2}{x+3})=\\lim_{x\\to\\infty}(\\frac{\\frac{2}{x}}{(1+\\frac{3}{x})})=0"
Thus, the function has a horizontal asymptote y = 0 and the vertical asymptote x = -3.
Comments
Leave a comment