Question #92210
Identify the vertical and horizontal asymptotes for (2x+4)/(x^2+5x+6)
** please answer by tommorow!!
1
Expert's answer
2019-08-04T11:22:49-0400
f(x)=2x+4x2+5x+6=(x+2)(x+2)(x+3)=2x+3f(x)=\frac{2x+4}{x^2+5x+6}=\frac{(x+2)}{(x+2)(x+3)}=\frac{2}{x+3}



It has the discontinuities at x = -3 and at x = -2 (also a puncture point)


1) x = -3 is a vertical asymptote because

limx3f(x)=limx32x+3=\lim_{x\to-3}f(x)=\lim_{x\to-3}\frac{2}{x+3}=\infty

2) x = -2 is not a vertical asymptote because

limx2f(x)=limx22x+3=2\lim_{x\to-2}f(x)=\lim_{x\to-2}\frac{2}{x+3}=2


Let the slant (or a horizontal asymptote in particular) asymptote be


y=kx+by=kx+b

k=limx(f(x)x)=limx(2x2+3x)=limx(2x21+3x)=0k=\lim_{x\to\infty}(\frac{f(x)}{x})=\lim_{x\to\infty}(\frac{2}{x^2+3x})=\lim_{x\to\infty}(\frac{\frac{2}{x^2}}{1+\frac{3}{x}})=0

b=limx(f(x)kx)=limx(2x+3)=limx(2x(1+3x))=0b=\lim_{x\to\infty}(f(x)-kx)=\lim_{x\to\infty}(\frac{2}{x+3})=\lim_{x\to\infty}(\frac{\frac{2}{x}}{(1+\frac{3}{x})})=0


Thus, the function has a horizontal asymptote y = 0 and the vertical asymptote x = -3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS