We reduce fractions to a common denominator and get
7 x 3 x − 4 + 2 x 6 − x − 10 = 0 \frac {7x} {3x-4} +\frac {2x} {6-x} - 10=0 3 x − 4 7 x + 6 − x 2 x − 10 = 0
7 x ( 6 − x ) ( 3 x − 4 ) ( 6 − x ) + 2 x ( 3 x − 4 ) ( 6 − x ) ( 3 x − 4 ) − 10 ( 6 − x ) ( 3 x − 4 ) ( 6 − x ) ( 3 x − 4 ) = 0 \frac {7x(6-x)} {(3x-4)(6-x)} +\frac {2x(3x-4)} {(6-x)(3x-4)} - \frac {10(6-x)(3x-4)} {(6-x)(3x-4)}=0 ( 3 x − 4 ) ( 6 − x ) 7 x ( 6 − x ) + ( 6 − x ) ( 3 x − 4 ) 2 x ( 3 x − 4 ) − ( 6 − x ) ( 3 x − 4 ) 10 ( 6 − x ) ( 3 x − 4 ) = 0
42 x − 7 x 2 + 6 x 2 − 8 x + 30 x 2 + 180 x − 240 + 40 x ( 6 − x ) ( 3 x − 4 ) = 0 \frac {42x-7x^2+6x^2-8x+30x^2+180x-240+40x}{(6-x)(3x-4)}=0 ( 6 − x ) ( 3 x − 4 ) 42 x − 7 x 2 + 6 x 2 − 8 x + 30 x 2 + 180 x − 240 + 40 x = 0
29 x 2 − 186 x + 240 ( 6 − x ) ( 3 x − 4 ) = 0 \frac {29x^2 - 186x + 240}{(6-x)(3x-4)}=0 ( 6 − x ) ( 3 x − 4 ) 29 x 2 − 186 x + 240 = 0 A fraction is zero if its numerator is zero.
29 x 2 − 186 x + 240 = 0 29x^2 - 186x + 240=0 29 x 2 − 186 x + 240 = 0 Solve the quadratic equation. Find the discriminant
D = 18 6 2 − 4 × 29 × 240 = 34596 − 27840 = 6756 D=186^2-4\times 29 \times 240=34596-27840=6756 D = 18 6 2 − 4 × 29 × 240 = 34596 − 27840 = 6756 Therefore the roots of the equation are equal
x 1 = 186 − 6756 2 × 29 = 93 − 1689 29 x_1=\frac {186-\sqrt {6756}} {2\times 29}= \frac {93-\sqrt {1689}} { 29} x 1 = 2 × 29 186 − 6756 = 29 93 − 1689
x 2 = 186 + 6756 2 × 29 = 93 + 1689 29 x_2=\frac {186+\sqrt {6756}} {2\times 29}= \frac {93+\sqrt {1689}} { 29} x 2 = 2 × 29 186 + 6756 = 29 93 + 1689 Answer.
x 1 = 93 − 1689 29 x_1= \frac {93-\sqrt {1689}} { 29} x 1 = 29 93 − 1689
x 2 = 93 + 1689 29 x_2= \frac {93+\sqrt {1689}} { 29} x 2 = 29 93 + 1689
Comments