Question #90508
Solve the following quadratic equation using the formula method:
7x/3x-4+2x/6-x=10
1
Expert's answer
2019-06-05T05:33:57-0400

We reduce fractions to a common denominator and get


7x3x4+2x6x10=0\frac {7x} {3x-4} +\frac {2x} {6-x} - 10=0

7x(6x)(3x4)(6x)+2x(3x4)(6x)(3x4)10(6x)(3x4)(6x)(3x4)=0\frac {7x(6-x)} {(3x-4)(6-x)} +\frac {2x(3x-4)} {(6-x)(3x-4)} - \frac {10(6-x)(3x-4)} {(6-x)(3x-4)}=0


42x7x2+6x28x+30x2+180x240+40x(6x)(3x4)=0\frac {42x-7x^2+6x^2-8x+30x^2+180x-240+40x}{(6-x)(3x-4)}=0

29x2186x+240(6x)(3x4)=0\frac {29x^2 - 186x + 240}{(6-x)(3x-4)}=0

A fraction is zero if its numerator is zero.


29x2186x+240=029x^2 - 186x + 240=0

Solve the quadratic equation. Find the discriminant


D=18624×29×240=3459627840=6756D=186^2-4\times 29 \times 240=34596-27840=6756

Therefore the roots of the equation are equal


x1=18667562×29=93168929x_1=\frac {186-\sqrt {6756}} {2\times 29}= \frac {93-\sqrt {1689}} { 29}

x2=186+67562×29=93+168929x_2=\frac {186+\sqrt {6756}} {2\times 29}= \frac {93+\sqrt {1689}} { 29}

Answer.

x1=93168929x_1= \frac {93-\sqrt {1689}} { 29}

x2=93+168929x_2= \frac {93+\sqrt {1689}} { 29}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS