Question #87178
Use the given function f to find f(0) and solve f(x) = 0. Show work

f(x) = x^2 - x - 12
1
Expert's answer
2019-03-28T10:56:23-0400

1) Substitute 0 for x in the function:


f(0)=02012=12f(0)={{0}^{2}}-0-12=-12

so


f(0)=12f\left( 0 \right)=-12

2) Solve

f(x)=0f\left( x \right)=0

We have equation

x2x12=0{{x}^{2}}-x-12=0

In order to solve this equation we use the quadratic formula. If 

ax2+bx+c=0a{{x}^{2}}+bx+c=0

then

x=b±b24ac2ax=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}

In our case

a=1,b=1,c=12a=1, b=-1, c=-12

Substitute these numbers in the formula


x=(1)±(1)241(12)21x=\frac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\cdot 1\cdot \left( -12 \right)}}{2\cdot 1}

x=1±1+482x=\frac{1\pm \sqrt{1+48}}{2}

x=1±492=1±72x=\frac{1\pm \sqrt{49}}{2}=\frac{1\pm 7}{2}

x1=1+72=4,x2=172=3{{x}_{1}}=\frac{1+7}{2}=4,\,\,\,\,{{x}_{2}}=\frac{1-7}{2}=-3

So our solution is


x1=4,x2=3{{x}_{1}}=4,\,\,{{x}_{2}}=-3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS