1) Substitute 0 for x in the function:
f(0)=02−0−12=−12 so
f(0)=−12 2) Solve
f(x)=0 We have equation
x2−x−12=0 In order to solve this equation we use the quadratic formula. If
ax2+bx+c=0 then
x=2a−b±b2−4ac In our case
a=1,b=−1,c=−12 Substitute these numbers in the formula
x=2⋅1−(−1)±(−1)2−4⋅1⋅(−12)
x=21±1+48
x=21±49=21±7
x1=21+7=4,x2=21−7=−3 So our solution is
x1=4,x2=−3
Comments