Answer to Question #85984 in Algebra for RAKESH DEY

Question #85984
prove that (a union b)\(a intersection b)= (a\b) union (b\a) for any two sets a and b in a universal set u.
1
Expert's answer
2019-03-11T11:05:24-0400

Let`s assume that:

"x\\in((A\\cup B)\\setminus(A\\cap B))"

We need to prove that:

"x\\in((A\\setminus B)\\cup(B\\setminus A))"

"x\\in((A\\cup B)\\setminus(A\\cap B)) \\iff (x\\in(A\\cup B))\\cap(x\\notin(A\\cap B)) \\iff ((x\\in A)\\cup(x\\in B))\\cap((x\\notin A)\\cup(x\\notin B)) \\iff ((x\\in A)\\cap(x\\notin A))\\cup((x\\in A)\\cap(x\\notin B))\\cup((x\\in B)\\cap(x\\notin A))\\cup((x\\in B)\\cap(x\\notin B)) \\iff \\empty\\cup((x\\in A)\\cap(x\\notin B))\\cup((x\\in B)\\cap(x\\notin A))\\cup\\empty \\iff ((x\\in A)\\cap(x\\notin B))\\cup((x\\in B)\\cap(x\\notin A)) \\iff (x\\in(A\\setminus B))\\cup (x\\in(B\\setminus A)) \\iff x\\in((A\\setminus B)\\cup(B\\setminus A))"


See, that

"x\\in((A\\cup B)\\setminus(A\\cap B)) \\iff x\\in((A\\setminus B)\\cup(B\\setminus A))"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS