Let`s assume that:
x∈((A∪B)∖(A∩B)) We need to prove that:
x∈((A∖B)∪(B∖A)) x∈((A∪B)∖(A∩B))⟺(x∈(A∪B))∩(x∈/(A∩B))⟺((x∈A)∪(x∈B))∩((x∈/A)∪(x∈/B))⟺((x∈A)∩(x∈/A))∪((x∈A)∩(x∈/B))∪((x∈B)∩(x∈/A))∪((x∈B)∩(x∈/B))⟺∅∪((x∈A)∩(x∈/B))∪((x∈B)∩(x∈/A))∪∅⟺((x∈A)∩(x∈/B))∪((x∈B)∩(x∈/A))⟺(x∈(A∖B))∪(x∈(B∖A))⟺x∈((A∖B)∪(B∖A))
See, that
x∈((A∪B)∖(A∩B))⟺x∈((A∖B)∪(B∖A))
Comments