There are three ways to solve systems of linear equations in two variables:
graphing.
substitution method.
elimination method.
1.
"2x + y = 15""x - y = 9"
a.
"(8, -1)"
b.
"2x + y = 15""x - y = 9"
"2x + x-9 = 15""y = x-9"
"3x = 24""y= x-9"
"x=8""y=-1""(8, -1)"
c.
"2x + y = 15""x - y = 9"
"3x - 2y = 12""2x + 5y = 72"
"2x + y+x-y= 15+9""x-y=9"
"3x = 24""x-y=9"
"x=8""8-y=9""x=8""y=-1""(8, -1)"
2.
"3x - 2y = 12""2x + 5y = 72"
a.
"(\\dfrac{204}{19}, \\dfrac{192}{19})"
b.
"3x - 2y = 12""2x + 5y = 72"
"y = \\dfrac{3}{2}x-6""2x+5(\\dfrac{3}{2}x-6)=72"
"y = \\dfrac{3}{2}x-6""\\dfrac{19}{2}x=102"
"x=\\dfrac{204}{19}""y=\\dfrac{3}{2}(\\dfrac{204}{19})-6""x=\\dfrac{204}{19}""y=\\dfrac{192}{19}""(\\dfrac{204}{19}, \\dfrac{192}{19})"
c.
"3x - 2y = 12""2x + 5y = 72"
"6x - 4y = 24""6x + 15y = 216"
"6x+15y-(6x-4y)=216-24""3x-2y=12"
"19y=192""x=\\dfrac{2}{3}y+4"
"x=\\dfrac{204}{19}""y=\\dfrac{192}{19}"
"(\\dfrac{204}{19}, \\dfrac{192}{19})"
3.
"3x - 2y = 12""2x + 5y = 7"
a.
"(\\dfrac{74}{19}, -\\dfrac{3}{19})"
b.
"3x - 2y = 12""2x + 5y = 7"
"y = \\dfrac{3}{2}x-6""2x+5(\\dfrac{3}{2}x-6)=7"
"y = \\dfrac{3}{2}x-6""\\dfrac{19}{2}x=37"
"x=\\dfrac{74}{19}""y=\\dfrac{3}{2}(\\dfrac{74}{19})-6""x=\\dfrac{74}{19}""y=-\\dfrac{3}{19}""(\\dfrac{74}{19}, -\\dfrac{3}{19})"
c.
"3x - 2y = 12""2x + 5y = 7"
"6x - 4y = 24""6x + 15y = 21"
"6x+15y-(6x-4y)=21-24""3x-2y=12"
"19y=-3""x=\\dfrac{2}{3}y+4"
"x=\\dfrac{74}{19}""y=-\\dfrac{3}{19}""(\\dfrac{74}{19}, -\\dfrac{3}{19})"
Comments
Leave a comment