Question #349051

Use Descartes' Rule of Signs to find the possible number of negative zeros of p(x)=2x5+x4+x3−4x2−x−6


1
Expert's answer
2022-06-08T17:58:00-0400
P(x)=2x5+x4+x34x2x6P(x)=2x^5+x^4+x^3−4x^2−x−6

The coefficients are 2,1,1,4,1,6.2,1,1,−4,−1,−6.

There is one change. This means that there is one positive real root.


To find the number of negative real roots, substitute xx  with x-x in the given polynomial: 2x5+x4+x34x2x62x^5+x^4+x^3−4x^2−x−6 becomes 2x5+x4x34x2+x6-2x^5+x^4-x^3−4x^2+x−6

The coefficients are 2,1,1,4,1,6.-2,1,-1,−4,1,−6.

There are four changes. This means that there are 4 or 2 or 0 negative real roots.


1 positive real root.

4 or 2 or 0 negative real roots.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS