1.
4X−B=XB+2AA=(−2411),B=(7−712)Let
X=(x11x21x12x22)Then
4X=(4x114x214x124x22)XB=(x11x21x12x22)(7−712)=(7x11−7x127x21−7x22x11+2x12x21+2x22)4X−BX=(−3x11+7x12−3x21+7x22−x11+2x12−x21+2x22)B+2A=(3134)(−3x11+7x12−3x21+7x22−x11+2x12−x21+2x22)=(3134)
−3x11+7x12=3−x11+2x12=3
−3x21+7x22=1−x21+2x22=4
x12=−6−x11+2x12=3
x22=−11−x21+2x22=4
x11=−21,x12=−6,x22=−11,x21=−26
X=(−21−26−6−11)
2.
A=⎝⎛001011111⎠⎞
⎝⎛001011111∣∣∣100010001⎠⎞
Swap the rows 1and 3
⎝⎛100110111∣∣∣001010100⎠⎞
R1=R1−R2
⎝⎛100010011∣∣∣001−110100⎠⎞ R2=R2−R3
⎝⎛100010001∣∣∣0−11−110100⎠⎞ On the left is the identity matrix. On the right is the inverse matrix.
A−1=⎝⎛0−11−110100⎠⎞ Check
AA−1=⎝⎛001011111⎠⎞⎝⎛0−11−110100⎠⎞
=⎝⎛0+0+10−1+10−1+10+0+00+1+0−1+1+00+0+00+0+01+0+0⎠⎞
=⎝⎛100010001⎠⎞=I3
A−1=⎝⎛0−11−110100⎠⎞
3.
x−2y+z=5−2x+3y−z=−8−x−y+2z=2
−x+y=−3−3y+3z=7−x−y+2z=2
x=y+3z=y+37−y−3−y+2y+314=2
x=y+13z=y+135=2 No solution
4.
x−1=0=>x=1
3−x=0=>x=3
x−1=3−x=>x−1=9−6x+x2,1≤x≤3
x2−7x+10=0
(x−2)(x−5)=0 Since 1≤x≤3, we take x=2.
A=∫12x−1dx+∫23(3−x)dx
=[32(x−1)3/2]21+[3x−2x2]32
=32−0+9−29−6+2=67(units2)
5.
16−x2≥0=>−4≤x≤4 Domain: [−4,4]
f′(x)=216−x2−2x=−16−x2x
f′(x)=0=>−16−x2x=0
x=0Critical numbers:−4,0,4.
f(−4)=0=f(4)
f(0)=4
The function has a local minimum at (−4,0) and at (4,0).
The function has a local maximum at (0,4).
6.
Domain: (−∞,∞)
f′(x)=2+1+9x23
f′′(x)=−(1+9x2)254x
f′′(x)=0=>−(1+9x2)254x=0
x=0
f(0)=0 If x<0,f′′(x)>0,f(x) is concave upward.
If x>0,f′′(x)<0,f(x) is concave downward.
The function f(x) is concave upward on (−∞,0).
The function f(x) is concave downward on (0,∞).
Point (0,0) is the inflection point.
Comments