Question #345264

1. Solve the matrix equation 4𝒳−ℬ=𝒳ℬ+2𝒜 if 𝒜=(−2141), ℬ=(71−72).

 

2. Calculate the inverse matrix to the matrix 𝒜=(001011111). Check whether the obtained inverse matrix is correct.

 

3. Solve the system of linear equations: 𝑥−2𝑦+𝑧=5,−2𝑥+3𝑦−𝑧=−8,−𝑥−𝑦+2𝑧=2.

 

 

4. Calculate the area of the flat shape bounded by the curves: 𝑦=√𝑥−1,𝑦=3−𝑥,𝑦=0.

 

5. Find all the extrema of the function 𝑓(𝑥)=√16−𝑥2.

 

6. Find the maximal intervals of convexity (concavity) of the function 𝑓(𝑥)=2𝑥+arctg(3𝑥). Find the respective inflection points.

 



1
Expert's answer
2022-05-27T13:59:48-0400

1.


4XB=XB+2A4X-B=XB+2AA=(2141),B=(7172)A=\begin{pmatrix} -2 & 1 \\ 4 & 1 \end{pmatrix}, B=\begin{pmatrix} 7 & 1 \\ -7 & 2 \end{pmatrix}

Let



X=(x11x12x21x22)X=\begin{pmatrix} x_{11}& x_{12} \\ x_{21} & x_{22} \end{pmatrix}

Then



4X=(4x114x124x214x22)4X=\begin{pmatrix} 4x_{11}& 4x_{12} \\ 4x_{21} & 4x_{22} \end{pmatrix}XB=(x11x12x21x22)(7172)XB=\begin{pmatrix} x_{11}& x_{12} \\ x_{21} & x_{22} \end{pmatrix}\begin{pmatrix} 7 & 1 \\ -7 & 2 \end{pmatrix}=(7x117x12x11+2x127x217x22x21+2x22)=\begin{pmatrix} 7x_{11}-7x_{12}& x_{11}+2x_{12} \\ 7x_{21}-7x_{22} & x_{21}+2x_{22} \end{pmatrix}4XBX=(3x11+7x12x11+2x123x21+7x22x21+2x22)4X-BX=\begin{pmatrix} -3x_{11}+7x_{12}& -x_{11}+2x_{12} \\ -3x_{21}+7x_{22} & -x_{21}+2x_{22} \end{pmatrix}B+2A=(3314)B+2A=\begin{pmatrix} 3 & 3 \\ 1 & 4 \end{pmatrix}(3x11+7x12x11+2x123x21+7x22x21+2x22)=(3314)\begin{pmatrix} -3x_{11}+7x_{12}& -x_{11}+2x_{12} \\ -3x_{21}+7x_{22} & -x_{21}+2x_{22} \end{pmatrix}=\begin{pmatrix} 3 & 3 \\ 1 & 4 \end{pmatrix}




3x11+7x12=3-3x_{11}+7x_{12}=3x11+2x12=3-x_{11}+2x_{12}=3




3x21+7x22=1-3x_{21}+7x_{22}=1x21+2x22=4-x_{21}+2x_{22}=4




x12=6x_{12}=-6x11+2x12=3-x_{11}+2x_{12}=3




x22=11x_{22}=-11x21+2x22=4-x_{21}+2x_{22}=4




x11=21,x12=6,x22=11,x21=26x_{11}=-21, x_{12}=-6, x_{22}=-11, x_{21}=-26




X=(2162611)X=\begin{pmatrix} -21& -6 \\ -26 & -11 \end{pmatrix}


2.


A=(001011111)A=\begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 1\\ 1 & 1 & 1\\ \end{pmatrix}

(001100011010111001)\begin{pmatrix} 0 & 0 & 1 & | & 1 & 0 & 0\\ 0 & 1 & 1 & | & 0 & 1 & 0\\ 1 & 1 & 1 & | & 0 & 0 & 1\\ \end{pmatrix}


Swap the rows 1and 3


(111001011010001100)\begin{pmatrix} 1 & 1 & 1 & | & 0 & 0 & 1\\ 0 & 1 & 1 & | & 0 & 1 & 0\\ 0 & 0 & 1 & | & 1 & 0 & 0\\ \end{pmatrix}


R1=R1R2R_1=R_1-R_2


(100011011010001100)\begin{pmatrix} 1 & 0 & 0 & | & 0 & -1 & 1\\ 0 & 1 & 1 & | & 0 & 1 & 0\\ 0 & 0 & 1 & | & 1 & 0 & 0\\ \end{pmatrix}

R2=R2R3R_2=R_2-R_3


(100011010110001100)\begin{pmatrix} 1 & 0 & 0 & | & 0 & -1 & 1\\ 0 & 1 & 0 & | & -1 & 1 & 0\\ 0 & 0 & 1 & | & 1 & 0 & 0\\ \end{pmatrix}

On the left is the identity matrix. On the right is the inverse matrix.


A1=(011110100)A^{-1}=\begin{pmatrix} 0 & -1 & 1\\ -1 & 1 & 0\\ 1 & 0 & 0\\ \end{pmatrix}

Check


AA1=(001011111)(011110100)AA^{-1}=\begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 1\\ 1 & 1 & 1\\ \end{pmatrix}\begin{pmatrix} 0 & -1 & 1\\ -1 & 1 & 0\\ 1 & 0 & 0\\ \end{pmatrix}

=(0+0+10+0+00+0+001+10+1+00+0+001+11+1+01+0+0)=\begin{pmatrix} 0+0+1 & 0+0+0 & 0+0+0\\ 0-1+1 & 0+1+0 & 0+0+0\\ 0-1+1 & -1+1+0 & 1+0+0\\ \end{pmatrix}

=(100010001)=I3=\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}=I_3

A1=(011110100)A^{-1}=\begin{pmatrix} 0 & -1 & 1\\ -1 & 1 & 0\\ 1 & 0 & 0\\ \end{pmatrix}

3.


x2y+z=52x+3yz=8xy+2z=2x-2y+z=5\\ -2x+3y-z=-8\\ -x-y+2z=2


x+y=33y+3z=7xy+2z=2-x+y=-3\\ -3y+3z=7\\ -x-y+2z=2


x=y+3z=y+73y3y+2y+143=2x=y+3\\ z=y+\dfrac{7}{3}\\ -y-3-y+2y+\dfrac{14}{3}=2



x=y+13z=y+153=2x=y+13\\ z=y+1\\ \dfrac{5}{3}=2

No solution


4.


x1=0=>x=1\sqrt{x-1}=0=>x=1

3x=0=>x=33-x=0=>x=3

x1=3x=>x1=96x+x2,1x3\sqrt{x-1}=3-x=>x-1=9-6x+x^2, 1\le x\le3

x27x+10=0x^2-7x+10=0

(x2)(x5)=0(x-2)(x-5)=0

Since 1x3,1\le x\le3, we take x=2.x=2.


A=12x1dx+23(3x)dxA=\displaystyle\int_{1}^{2}\sqrt{x-1}dx+\displaystyle\int_{2}^{3}(3-x)dx

=[2(x1)3/23]21+[3xx22]32=[\dfrac{2(x-1)^{3/2}}{3}]\begin{matrix} 2 \\ 1 \end{matrix}+[3x-\dfrac{x^2}{2}]\begin{matrix} 3 \\ 2 \end{matrix}

=230+9926+2=76(units2)=\dfrac{2}{3}-0+9-\dfrac{9}{2}-6+2=\dfrac{7}{6}({units}^2)

5.


16x20=>4x416-x^2\ge0=>-4\le x\le 4

Domain: [4,4][-4, 4]


f(x)=2x216x2=x16x2f'(x)=\dfrac{-2x}{2\sqrt{16-x^2}}=-\dfrac{x}{\sqrt{16-x^2}}

f(x)=0=>x16x2=0f'(x)=0=>-\dfrac{x}{\sqrt{16-x^2}}=0

x=0x=0

Critical numbers:4,0,4.-4, 0, 4.


f(4)=0=f(4)f(-4)=0=f(4)

f(0)=4f(0)=4

The function has a local minimum at (4,0)(-4,0) and at (4,0).(4,0).

The function has a local maximum at (0,4).(0,4).

 

6.

Domain: (,)(-\infin, \infin)


f(x)=2+31+9x2f'(x)=2+\dfrac{3}{1+9x^2}

f(x)=54x(1+9x2)2f''(x)=-\dfrac{54x}{(1+9x^2)^2}

f(x)=0=>54x(1+9x2)2=0f''(x)=0=>-\dfrac{54x}{(1+9x^2)^2}=0

x=0x=0

f(0)=0f(0)=0

If x<0,f(x)>0,f(x)x<0, f''(x)>0, f(x) is concave upward.

If x>0,f(x)<0,f(x)x>0, f''(x)<0, f(x) is concave downward.

The function f(x)f(x) is concave upward on (,0).(-\infin, 0).

The function f(x)f(x) is concave downward on (0,).(0,\infin).

Point (0,0)(0,0) is the inflection point.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS