1.
4 X − B = X B + 2 A 4X-B=XB+2A 4 X − B = XB + 2 A A = ( − 2 1 4 1 ) , B = ( 7 1 − 7 2 ) A=\begin{pmatrix}
-2 & 1 \\
4 & 1
\end{pmatrix}, B=\begin{pmatrix}
7 & 1 \\
-7 & 2
\end{pmatrix} A = ( − 2 4 1 1 ) , B = ( 7 − 7 1 2 ) Let
X = ( x 11 x 12 x 21 x 22 ) X=\begin{pmatrix}
x_{11}& x_{12} \\
x_{21} & x_{22}
\end{pmatrix} X = ( x 11 x 21 x 12 x 22 ) Then
4 X = ( 4 x 11 4 x 12 4 x 21 4 x 22 ) 4X=\begin{pmatrix}
4x_{11}& 4x_{12} \\
4x_{21} & 4x_{22}
\end{pmatrix} 4 X = ( 4 x 11 4 x 21 4 x 12 4 x 22 ) X B = ( x 11 x 12 x 21 x 22 ) ( 7 1 − 7 2 ) XB=\begin{pmatrix}
x_{11}& x_{12} \\
x_{21} & x_{22}
\end{pmatrix}\begin{pmatrix}
7 & 1 \\
-7 & 2
\end{pmatrix} XB = ( x 11 x 21 x 12 x 22 ) ( 7 − 7 1 2 ) = ( 7 x 11 − 7 x 12 x 11 + 2 x 12 7 x 21 − 7 x 22 x 21 + 2 x 22 ) =\begin{pmatrix}
7x_{11}-7x_{12}& x_{11}+2x_{12} \\
7x_{21}-7x_{22} & x_{21}+2x_{22}
\end{pmatrix} = ( 7 x 11 − 7 x 12 7 x 21 − 7 x 22 x 11 + 2 x 12 x 21 + 2 x 22 ) 4 X − B X = ( − 3 x 11 + 7 x 12 − x 11 + 2 x 12 − 3 x 21 + 7 x 22 − x 21 + 2 x 22 ) 4X-BX=\begin{pmatrix}
-3x_{11}+7x_{12}& -x_{11}+2x_{12} \\
-3x_{21}+7x_{22} & -x_{21}+2x_{22}
\end{pmatrix} 4 X − BX = ( − 3 x 11 + 7 x 12 − 3 x 21 + 7 x 22 − x 11 + 2 x 12 − x 21 + 2 x 22 ) B + 2 A = ( 3 3 1 4 ) B+2A=\begin{pmatrix}
3 & 3 \\
1 & 4
\end{pmatrix} B + 2 A = ( 3 1 3 4 ) ( − 3 x 11 + 7 x 12 − x 11 + 2 x 12 − 3 x 21 + 7 x 22 − x 21 + 2 x 22 ) = ( 3 3 1 4 ) \begin{pmatrix}
-3x_{11}+7x_{12}& -x_{11}+2x_{12} \\
-3x_{21}+7x_{22} & -x_{21}+2x_{22}
\end{pmatrix}=\begin{pmatrix}
3 & 3 \\
1 & 4
\end{pmatrix} ( − 3 x 11 + 7 x 12 − 3 x 21 + 7 x 22 − x 11 + 2 x 12 − x 21 + 2 x 22 ) = ( 3 1 3 4 )
− 3 x 11 + 7 x 12 = 3 -3x_{11}+7x_{12}=3 − 3 x 11 + 7 x 12 = 3 − x 11 + 2 x 12 = 3 -x_{11}+2x_{12}=3 − x 11 + 2 x 12 = 3
− 3 x 21 + 7 x 22 = 1 -3x_{21}+7x_{22}=1 − 3 x 21 + 7 x 22 = 1 − x 21 + 2 x 22 = 4 -x_{21}+2x_{22}=4 − x 21 + 2 x 22 = 4
x 12 = − 6 x_{12}=-6 x 12 = − 6 − x 11 + 2 x 12 = 3 -x_{11}+2x_{12}=3 − x 11 + 2 x 12 = 3
x 22 = − 11 x_{22}=-11 x 22 = − 11 − x 21 + 2 x 22 = 4 -x_{21}+2x_{22}=4 − x 21 + 2 x 22 = 4
x 11 = − 21 , x 12 = − 6 , x 22 = − 11 , x 21 = − 26 x_{11}=-21, x_{12}=-6, x_{22}=-11, x_{21}=-26 x 11 = − 21 , x 12 = − 6 , x 22 = − 11 , x 21 = − 26
X = ( − 21 − 6 − 26 − 11 ) X=\begin{pmatrix}
-21& -6 \\
-26 & -11
\end{pmatrix} X = ( − 21 − 26 − 6 − 11 )
2.
A = ( 0 0 1 0 1 1 1 1 1 ) A=\begin{pmatrix}
0 & 0 & 1\\
0 & 1 & 1\\
1 & 1 & 1\\
\end{pmatrix} A = ⎝ ⎛ 0 0 1 0 1 1 1 1 1 ⎠ ⎞
( 0 0 1 ∣ 1 0 0 0 1 1 ∣ 0 1 0 1 1 1 ∣ 0 0 1 ) \begin{pmatrix}
0 & 0 & 1 & | & 1 & 0 & 0\\
0 & 1 & 1 & | & 0 & 1 & 0\\
1 & 1 & 1 & | & 0 & 0 & 1\\
\end{pmatrix} ⎝ ⎛ 0 0 1 0 1 1 1 1 1 ∣ ∣ ∣ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
Swap the rows 1and 3
( 1 1 1 ∣ 0 0 1 0 1 1 ∣ 0 1 0 0 0 1 ∣ 1 0 0 ) \begin{pmatrix}
1 & 1 & 1 & | & 0 & 0 & 1\\
0 & 1 & 1 & | & 0 & 1 & 0\\
0 & 0 & 1 & | & 1 & 0 & 0\\
\end{pmatrix} ⎝ ⎛ 1 0 0 1 1 0 1 1 1 ∣ ∣ ∣ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
R 1 = R 1 − R 2 R_1=R_1-R_2 R 1 = R 1 − R 2
( 1 0 0 ∣ 0 − 1 1 0 1 1 ∣ 0 1 0 0 0 1 ∣ 1 0 0 ) \begin{pmatrix}
1 & 0 & 0 & | & 0 & -1 & 1\\
0 & 1 & 1 & | & 0 & 1 & 0\\
0 & 0 & 1 & | & 1 & 0 & 0\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 1 1 ∣ ∣ ∣ 0 0 1 − 1 1 0 1 0 0 ⎠ ⎞ R 2 = R 2 − R 3 R_2=R_2-R_3 R 2 = R 2 − R 3
( 1 0 0 ∣ 0 − 1 1 0 1 0 ∣ − 1 1 0 0 0 1 ∣ 1 0 0 ) \begin{pmatrix}
1 & 0 & 0 & | & 0 & -1 & 1\\
0 & 1 & 0 & | & -1 & 1 & 0\\
0 & 0 & 1 & | & 1 & 0 & 0\\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ∣ ∣ ∣ 0 − 1 1 − 1 1 0 1 0 0 ⎠ ⎞ On the left is the identity matrix. On the right is the inverse matrix.
A − 1 = ( 0 − 1 1 − 1 1 0 1 0 0 ) A^{-1}=\begin{pmatrix}
0 & -1 & 1\\
-1 & 1 & 0\\
1 & 0 & 0\\
\end{pmatrix} A − 1 = ⎝ ⎛ 0 − 1 1 − 1 1 0 1 0 0 ⎠ ⎞ Check
A A − 1 = ( 0 0 1 0 1 1 1 1 1 ) ( 0 − 1 1 − 1 1 0 1 0 0 ) AA^{-1}=\begin{pmatrix}
0 & 0 & 1\\
0 & 1 & 1\\
1 & 1 & 1\\
\end{pmatrix}\begin{pmatrix}
0 & -1 & 1\\
-1 & 1 & 0\\
1 & 0 & 0\\
\end{pmatrix} A A − 1 = ⎝ ⎛ 0 0 1 0 1 1 1 1 1 ⎠ ⎞ ⎝ ⎛ 0 − 1 1 − 1 1 0 1 0 0 ⎠ ⎞
= ( 0 + 0 + 1 0 + 0 + 0 0 + 0 + 0 0 − 1 + 1 0 + 1 + 0 0 + 0 + 0 0 − 1 + 1 − 1 + 1 + 0 1 + 0 + 0 ) =\begin{pmatrix}
0+0+1 & 0+0+0 & 0+0+0\\
0-1+1 & 0+1+0 & 0+0+0\\
0-1+1 & -1+1+0 & 1+0+0\\
\end{pmatrix} = ⎝ ⎛ 0 + 0 + 1 0 − 1 + 1 0 − 1 + 1 0 + 0 + 0 0 + 1 + 0 − 1 + 1 + 0 0 + 0 + 0 0 + 0 + 0 1 + 0 + 0 ⎠ ⎞
= ( 1 0 0 0 1 0 0 0 1 ) = I 3 =\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
\end{pmatrix}=I_3 = ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞ = I 3
A − 1 = ( 0 − 1 1 − 1 1 0 1 0 0 ) A^{-1}=\begin{pmatrix}
0 & -1 & 1\\
-1 & 1 & 0\\
1 & 0 & 0\\
\end{pmatrix} A − 1 = ⎝ ⎛ 0 − 1 1 − 1 1 0 1 0 0 ⎠ ⎞
3.
x − 2 y + z = 5 − 2 x + 3 y − z = − 8 − x − y + 2 z = 2 x-2y+z=5\\
-2x+3y-z=-8\\
-x-y+2z=2 x − 2 y + z = 5 − 2 x + 3 y − z = − 8 − x − y + 2 z = 2
− x + y = − 3 − 3 y + 3 z = 7 − x − y + 2 z = 2 -x+y=-3\\
-3y+3z=7\\
-x-y+2z=2 − x + y = − 3 − 3 y + 3 z = 7 − x − y + 2 z = 2
x = y + 3 z = y + 7 3 − y − 3 − y + 2 y + 14 3 = 2 x=y+3\\
z=y+\dfrac{7}{3}\\
-y-3-y+2y+\dfrac{14}{3}=2 x = y + 3 z = y + 3 7 − y − 3 − y + 2 y + 3 14 = 2
x = y + 13 z = y + 1 5 3 = 2 x=y+13\\
z=y+1\\
\dfrac{5}{3}=2 x = y + 13 z = y + 1 3 5 = 2 No solution
4.
x − 1 = 0 = > x = 1 \sqrt{x-1}=0=>x=1 x − 1 = 0 => x = 1
3 − x = 0 = > x = 3 3-x=0=>x=3 3 − x = 0 => x = 3
x − 1 = 3 − x = > x − 1 = 9 − 6 x + x 2 , 1 ≤ x ≤ 3 \sqrt{x-1}=3-x=>x-1=9-6x+x^2, 1\le x\le3 x − 1 = 3 − x => x − 1 = 9 − 6 x + x 2 , 1 ≤ x ≤ 3
x 2 − 7 x + 10 = 0 x^2-7x+10=0 x 2 − 7 x + 10 = 0
( x − 2 ) ( x − 5 ) = 0 (x-2)(x-5)=0 ( x − 2 ) ( x − 5 ) = 0 Since 1 ≤ x ≤ 3 , 1\le x\le3, 1 ≤ x ≤ 3 , we take x = 2. x=2. x = 2.
A = ∫ 1 2 x − 1 d x + ∫ 2 3 ( 3 − x ) d x A=\displaystyle\int_{1}^{2}\sqrt{x-1}dx+\displaystyle\int_{2}^{3}(3-x)dx A = ∫ 1 2 x − 1 d x + ∫ 2 3 ( 3 − x ) d x
= [ 2 ( x − 1 ) 3 / 2 3 ] 2 1 + [ 3 x − x 2 2 ] 3 2 =[\dfrac{2(x-1)^{3/2}}{3}]\begin{matrix}
2 \\
1
\end{matrix}+[3x-\dfrac{x^2}{2}]\begin{matrix}
3 \\
2
\end{matrix} = [ 3 2 ( x − 1 ) 3/2 ] 2 1 + [ 3 x − 2 x 2 ] 3 2
= 2 3 − 0 + 9 − 9 2 − 6 + 2 = 7 6 ( u n i t s 2 ) =\dfrac{2}{3}-0+9-\dfrac{9}{2}-6+2=\dfrac{7}{6}({units}^2) = 3 2 − 0 + 9 − 2 9 − 6 + 2 = 6 7 ( u ni t s 2 )
5.
16 − x 2 ≥ 0 = > − 4 ≤ x ≤ 4 16-x^2\ge0=>-4\le x\le 4 16 − x 2 ≥ 0 => − 4 ≤ x ≤ 4 Domain: [ − 4 , 4 ] [-4, 4] [ − 4 , 4 ]
f ′ ( x ) = − 2 x 2 16 − x 2 = − x 16 − x 2 f'(x)=\dfrac{-2x}{2\sqrt{16-x^2}}=-\dfrac{x}{\sqrt{16-x^2}} f ′ ( x ) = 2 16 − x 2 − 2 x = − 16 − x 2 x
f ′ ( x ) = 0 = > − x 16 − x 2 = 0 f'(x)=0=>-\dfrac{x}{\sqrt{16-x^2}}=0 f ′ ( x ) = 0 => − 16 − x 2 x = 0
x = 0 x=0 x = 0 Critical numbers:− 4 , 0 , 4. -4, 0, 4. − 4 , 0 , 4.
f ( − 4 ) = 0 = f ( 4 ) f(-4)=0=f(4) f ( − 4 ) = 0 = f ( 4 )
f ( 0 ) = 4 f(0)=4 f ( 0 ) = 4
The function has a local minimum at ( − 4 , 0 ) (-4,0) ( − 4 , 0 ) and at ( 4 , 0 ) . (4,0). ( 4 , 0 ) .
The function has a local maximum at ( 0 , 4 ) . (0,4). ( 0 , 4 ) .
6.
Domain: ( − ∞ , ∞ ) (-\infin, \infin) ( − ∞ , ∞ )
f ′ ( x ) = 2 + 3 1 + 9 x 2 f'(x)=2+\dfrac{3}{1+9x^2} f ′ ( x ) = 2 + 1 + 9 x 2 3
f ′ ′ ( x ) = − 54 x ( 1 + 9 x 2 ) 2 f''(x)=-\dfrac{54x}{(1+9x^2)^2} f ′′ ( x ) = − ( 1 + 9 x 2 ) 2 54 x
f ′ ′ ( x ) = 0 = > − 54 x ( 1 + 9 x 2 ) 2 = 0 f''(x)=0=>-\dfrac{54x}{(1+9x^2)^2}=0 f ′′ ( x ) = 0 => − ( 1 + 9 x 2 ) 2 54 x = 0
x = 0 x=0 x = 0
f ( 0 ) = 0 f(0)=0 f ( 0 ) = 0 If x < 0 , f ′ ′ ( x ) > 0 , f ( x ) x<0, f''(x)>0, f(x) x < 0 , f ′′ ( x ) > 0 , f ( x ) is concave upward.
If x > 0 , f ′ ′ ( x ) < 0 , f ( x ) x>0, f''(x)<0, f(x) x > 0 , f ′′ ( x ) < 0 , f ( x ) is concave downward.
The function f ( x ) f(x) f ( x ) is concave upward on ( − ∞ , 0 ) . (-\infin, 0). ( − ∞ , 0 ) .
The function f ( x ) f(x) f ( x ) is concave downward on ( 0 , ∞ ) . (0,\infin). ( 0 , ∞ ) .
Point ( 0 , 0 ) (0,0) ( 0 , 0 ) is the inflection point.
Comments