1. Find the domain of the function π(π₯)=ln(β2π₯2βπ₯β6)+βπ₯2β1.
Β
2. Find the inverse function of the function π(π₯)=π₯2β4π₯+5,π₯βγ3,4β©. Find the domain and the range of the inverse function.
Β
3. Construct the tangent line to the graph of the function π(π₯)=4π₯β βπ₯β2β βπ₯ which is parallel to the line π¦=π₯.
Β
4. Find the maximal intervals of monotonicity of the function π(π₯)=ππ₯+3π₯2+2π₯+6.
Β
5. Find the integral β«6β π₯3β ππ₯2+2ππ₯.
Β
6. Find the general solution of the differential equation π₯2+1+π¦β²β cos(π¦)=0.Β
1.
a)
Then "-2x^2-x-6<0, x\\in \\R"
"Domain:\\{\\}"
b)
"(x+2)(x-3)<0"
"x\\le -1\\ or\\ x\\ge1"
Domain:"(-2, -1]\\cup[1,3)"
2.
"x_v=-\\dfrac{-4}{2(1)}=2"
The function "f" increases on "(3, 4)"
"f(4)=(4)^2\u22124(4)+5=5"
Domain: "[3, 4]"
Range: "[2, 5]"
ChangeΒ "x"Β andΒ "y"
"x=y^2-4y+5, 3\\le y\\le 4"Solve forΒ "y"
"y^2-4y+4=x-1""(y-2)^2=x-1"Since "3\\le y\\le 4"
Then
Domain: "[2, 5]"
Range: "[3, 4]"
3.
Domain: "[0, \\infin)"
"slope=f'(x)=\\dfrac{6x-1}{\\sqrt{x}}=1"
"6x-\\sqrt{x}-1=0"
"(3\\sqrt{x}+1)(2\\sqrt{x}-1)=0"
Since "\\sqrt{x}\\ge0," we take "2\\sqrt{x}-1=0"
"x=\\dfrac{1}{4}"
"f(\\dfrac{1}{4})=4(\\dfrac{1}{4})\\sqrt{\\dfrac{1}{4}}-2\\sqrt{\\dfrac{1}{4}}=-\\dfrac{1}{2}"
The tangent line to the graph is
4.
Domain: "(-\\infin, \\infin)"
"f'(x)=0=>e^x+6x+2=0"
"(e^x+6x+2)'=e^x+6>0, x\\in \\R"
The function "g(x)=e^x+6x+2" is strictly increasing on "(-\\infin, \\infin)."
The equation "e^x+6x+2=0" has the only solution "x\\approx-0.4406."
The function "f(x)" is monotonic decreasing on "(-\\infin, -0.4406)."
The function "f(x)" is monotonic increasing on "( -0.4406, \\infin)."
5.
"t=x^2, dt=2xdx"
"\\int te^t dt"
"u=t, du=dt"
"dv=e^tdt, v=e^t"
"\\int te^t dt=te^t -\\int e^t dt=te^t-e^t+C_1"
Β 6.
"\\cos(y)dy=-(x^2+1)dx"
Integrate
"\\sin (y)=-\\dfrac{x^3}{3}-x+C"
"\\sin (y)+\\dfrac{x^3}{3}+x=C"
Comments
Leave a comment