1.
f(x)=ln(−x2−x−62)+x2−1x2−x−6<0x2−1≥0(x+2)(x−3)<0x≤−1 or x≥1Domain:(−2,−1]∪[1,3)
2.
f(x)=x2−4x+5,x∈[3,4]xv=−2(1)−4=2The function f increases on (3,4)
f(3)=(3)2−4(3)+5=2f(4)=(4)2−4(4)+5=5Domain: [3,4]
Range: [2,5]
y=x2−4x+5,3≤x≤4Change x and y
x=y2−4y+5,3≤y≤4Solve for y
y2−4y+4=x−1(y−2)2=x−1Since 3≤y≤4
y−2=x−1
y=2+x−1Then
f−1(x)=2+x−1
Domain: [2,5]
Range: [3,4]
3.
f(x)=4xx−2xDomain: [0,∞)
f′(x)=4(23)x−2x2=x6x−1slope=f′(x)=x6x−1=16x−x−1=0(3x+1)(2x−1)=0Since x≥0, we take 2x−1=0
x=21x=41f(41)=4(41)41−241=−21The tangent line to the graph is
y+21=x−41y=x−43
Comments