1.
f ( x ) = ln ( − 2 x 2 − x − 6 ) + x 2 − 1 f(x)=\ln(-\dfrac{2}{x^2-x-6})+\sqrt{x^2-1} f ( x ) = ln ( − x 2 − x − 6 2 ) + x 2 − 1 x 2 − x − 6 < 0 x^2-x-6<0 x 2 − x − 6 < 0 x 2 − 1 ≥ 0 x^2-1\ge0 x 2 − 1 ≥ 0 ( x + 2 ) ( x − 3 ) < 0 (x+2)(x-3)<0 ( x + 2 ) ( x − 3 ) < 0 x ≤ − 1 o r x ≥ 1 x\le -1\ or\ x\ge1 x ≤ − 1 or x ≥ 1 Domain:( − 2 , − 1 ] ∪ [ 1 , 3 ) (-2, -1]\cup[1,3) ( − 2 , − 1 ] ∪ [ 1 , 3 )
2.
𝑓 ( 𝑥 ) = x 2 − 4 x + 5 , x ∈ [ 3 , 4 ] 𝑓(𝑥)=x^2−4x+5,x\in [3, 4] f ( x ) = x 2 − 4 x + 5 , x ∈ [ 3 , 4 ] x v = − − 4 2 ( 1 ) = 2 x_v=-\dfrac{-4}{2(1)}=2 x v = − 2 ( 1 ) − 4 = 2 The function f f f increases on ( 3 , 4 ) (3, 4) ( 3 , 4 )
f ( 3 ) = ( 3 ) 2 − 4 ( 3 ) + 5 = 2 f(3)=(3)^2−4(3)+5=2 f ( 3 ) = ( 3 ) 2 − 4 ( 3 ) + 5 = 2 f ( 4 ) = ( 4 ) 2 − 4 ( 4 ) + 5 = 5 f(4)=(4)^2−4(4)+5=5 f ( 4 ) = ( 4 ) 2 − 4 ( 4 ) + 5 = 5 Domain: [ 3 , 4 ] [3, 4] [ 3 , 4 ]
Range: [ 2 , 5 ] [2, 5] [ 2 , 5 ]
y = x 2 − 4 x + 5 , 3 ≤ x ≤ 4 y=x^2-4x+5, 3\le x\le4 y = x 2 − 4 x + 5 , 3 ≤ x ≤ 4 Change x x x and y y y
x = y 2 − 4 y + 5 , 3 ≤ y ≤ 4 x=y^2-4y+5, 3\le y\le 4 x = y 2 − 4 y + 5 , 3 ≤ y ≤ 4 Solve for y y y
y 2 − 4 y + 4 = x − 1 y^2-4y+4=x-1 y 2 − 4 y + 4 = x − 1 ( y − 2 ) 2 = x − 1 (y-2)^2=x-1 ( y − 2 ) 2 = x − 1 Since 3 ≤ y ≤ 4 3\le y\le 4 3 ≤ y ≤ 4
y − 2 = x − 1 y-2=\sqrt{x-1} y − 2 = x − 1
y = 2 + x − 1 y=2+\sqrt{x-1} y = 2 + x − 1 Then
f − 1 ( x ) = 2 + x − 1 f^{-1}(x)=2+\sqrt{x-1} f − 1 ( x ) = 2 + x − 1
Domain: [ 2 , 5 ] [2, 5] [ 2 , 5 ]
Range: [ 3 , 4 ] [3, 4] [ 3 , 4 ]
3.
f ( x ) = 4 x x − 2 x f(x)=4x\sqrt{x}-2\sqrt{x} f ( x ) = 4 x x − 2 x Domain: [ 0 , ∞ ) [0, \infin) [ 0 , ∞ )
f ′ ( x ) = 4 ( 3 2 ) x − 2 2 x = 6 x − 1 x f'(x)=4(\dfrac{3}{2})\sqrt{x}-\dfrac{2}{2\sqrt{x}}=\dfrac{6x-1}{\sqrt{x}} f ′ ( x ) = 4 ( 2 3 ) x − 2 x 2 = x 6 x − 1 s l o p e = f ′ ( x ) = 6 x − 1 x = 1 slope=f'(x)=\dfrac{6x-1}{\sqrt{x}}=1 s l o p e = f ′ ( x ) = x 6 x − 1 = 1 6 x − x − 1 = 0 6x-\sqrt{x}-1=0 6 x − x − 1 = 0 ( 3 x + 1 ) ( 2 x − 1 ) = 0 (3\sqrt{x}+1)(2\sqrt{x}-1)=0 ( 3 x + 1 ) ( 2 x − 1 ) = 0 Since x ≥ 0 , \sqrt{x}\ge0, x ≥ 0 , we take 2 x − 1 = 0 2\sqrt{x}-1=0 2 x − 1 = 0
x = 1 2 \sqrt{x}=\dfrac{1}{2} x = 2 1 x = 1 4 x=\dfrac{1}{4} x = 4 1 f ( 1 4 ) = 4 ( 1 4 ) 1 4 − 2 1 4 = − 1 2 f(\dfrac{1}{4})=4(\dfrac{1}{4})\sqrt{\dfrac{1}{4}}-2\sqrt{\dfrac{1}{4}}=-\dfrac{1}{2} f ( 4 1 ) = 4 ( 4 1 ) 4 1 − 2 4 1 = − 2 1 The tangent line to the graph is
y + 1 2 = x − 1 4 y+\dfrac{1}{2}=x-\dfrac{1}{4} y + 2 1 = x − 4 1 y = x − 3 4 y=x-\dfrac{3}{4} y = x − 4 3
Comments