Question #342589

1- Find the domain of function f(X)=ln (-2/X2-x-6) +√x2 -1



2- Find the inverse function of the function f(X)=X2 -4x +5; X €(3,4)



3- construct the tangent line to the graph of the function f(X)= 4x.√x-2 .√x which is parallel to the line y=x.

1
Expert's answer
2022-05-26T07:16:47-0400

1.


f(x)=ln(2x2x6)+x21f(x)=\ln(-\dfrac{2}{x^2-x-6})+\sqrt{x^2-1}x2x6<0x^2-x-6<0x210x^2-1\ge0(x+2)(x3)<0(x+2)(x-3)<0x1 or x1x\le -1\ or\ x\ge1

Domain:(2,1][1,3)(-2, -1]\cup[1,3)


2.



𝑓(𝑥)=x24x+5,x[3,4]𝑓(𝑥)=x^2−4x+5,x\in [3, 4]xv=42(1)=2x_v=-\dfrac{-4}{2(1)}=2

The function ff increases on (3,4)(3, 4)



f(3)=(3)24(3)+5=2f(3)=(3)^2−4(3)+5=2f(4)=(4)24(4)+5=5f(4)=(4)^2−4(4)+5=5

Domain: [3,4][3, 4]

Range: [2,5][2, 5]



y=x24x+5,3x4y=x^2-4x+5, 3\le x\le4

Change xx and yy

x=y24y+5,3y4x=y^2-4y+5, 3\le y\le 4

Solve for yy

y24y+4=x1y^2-4y+4=x-1(y2)2=x1(y-2)^2=x-1

Since 3y43\le y\le 4



y2=x1y-2=\sqrt{x-1}





y=2+x1y=2+\sqrt{x-1}

Then



f1(x)=2+x1f^{-1}(x)=2+\sqrt{x-1}


Domain: [2,5][2, 5]

Range: [3,4][3, 4]


3.



f(x)=4xx2xf(x)=4x\sqrt{x}-2\sqrt{x}

Domain: [0,)[0, \infin)



f(x)=4(32)x22x=6x1xf'(x)=4(\dfrac{3}{2})\sqrt{x}-\dfrac{2}{2\sqrt{x}}=\dfrac{6x-1}{\sqrt{x}}slope=f(x)=6x1x=1slope=f'(x)=\dfrac{6x-1}{\sqrt{x}}=16xx1=06x-\sqrt{x}-1=0(3x+1)(2x1)=0(3\sqrt{x}+1)(2\sqrt{x}-1)=0

Since x0,\sqrt{x}\ge0, we take 2x1=02\sqrt{x}-1=0



x=12\sqrt{x}=\dfrac{1}{2}x=14x=\dfrac{1}{4}f(14)=4(14)14214=12f(\dfrac{1}{4})=4(\dfrac{1}{4})\sqrt{\dfrac{1}{4}}-2\sqrt{\dfrac{1}{4}}=-\dfrac{1}{2}

The tangent line to the graph is



y+12=x14y+\dfrac{1}{2}=x-\dfrac{1}{4}y=x34y=x-\dfrac{3}{4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS