Question #334931

x+12x=12x+\sqrt{12-\sqrt{x}}=12

Solve this equation for x.

Please provide the full steps.


1
Expert's answer
2022-05-01T17:01:21-0400
0x120\le x\le12

12x=12x\sqrt{12-\sqrt{x}}=12-x(12x)2=(12x)2\bigg(\sqrt{12-\sqrt{x}}\bigg)^2=(12-x)^2

12x=14424x+x212-\sqrt{x}=144-24x+x^2

x224x+x+132=0x^2-24x+\sqrt{x}+132=0

(x)424(x)2+x+132=0(\sqrt{x})^4-24(\sqrt{x})^2+\sqrt{x}+132=0

(x+4)(x3)((x)2x11)=0(\sqrt{x}+4)(\sqrt{x}-3)((\sqrt{x})^2-\sqrt{x}-11)=0

x+4>0\sqrt{x}+4>0

x3=0=>x=9\sqrt{x}-3=0=>x=9

(x)2x11=0(\sqrt{x})^2-\sqrt{x}-11=0

D=(1)24(1)(11)=45D=(-1)^2-4(1)(-11)=45

x=1±452\sqrt{x}=\dfrac{1\pm\sqrt{45}}{2}

Since x0,\sqrt{x}\ge0, we take


x=1+452\sqrt{x}=\dfrac{1+\sqrt{45}}{2}

x=(1+35)24x=\dfrac{(1+3\sqrt{5})^2}{4}

x=23+352>12,does not satisfyx=\dfrac{23+3\sqrt{5}}{2}>12, does\ not\ satisfy

{9}\{9\}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS