First, let's detach the whole part of the fraction:
x(x−1)2x4−x3−2x2+4x+1=x(x−1)2x3(x−1)+x(x−1)2−2x2+4x+1x(x−1)2x3(x−1)=x−1x2=x−1x2−1+1=x−1(x+1)(x−1)+x−11==x+1+x−11
Second, decompose the fraction x(x−1)2−2x2+4x+1 to partial fractions:
x(x−1)2−2x2+4x+1=xA+x−1B+(x−1)2C
Let's multiply both parts of this equation by x(x−1)2 and equate the coefficients at equal powers of x:
−2x2+4x+1=A(x−1)2+Bx(x−1)++Cx=Ax2−2Ax+A+Bx2−Bx++Cx=(A+B)x2++(−2A−B+C)x+A⎩⎨⎧A+B=−2−2A−B+C=4A=1⇒⇒⎩⎨⎧A=1B=−2−A=−2−1=−3−B+C=4+2A=4+2⋅1=6⇒⇒⎩⎨⎧A=1B=−3C=6+B=6+(−3)=3
x(x−1)2x4−x3−2x2+4x+1=x+1+x−11++x1−x−13+(x−1)23=x+1+x1−x−12+(x−1)23
Comments