Question #331664

Decompose



(i)x^4-x^3-2x^2+4x+1/x(x-1)^2




(5)



into partial fractions (show all the steps)

1
Expert's answer
2022-04-27T14:35:26-0400

First, let's detach the whole part of the fraction:

x4x32x2+4x+1x(x1)2=x3(x1)x(x1)2+2x2+4x+1x(x1)2x3(x1)x(x1)2=x2x1=x21+1x1=(x+1)(x1)x1+1x1==x+1+1x1\frac{x^4-x^3-2x^2+4x+1}{x(x-1)^2}=\frac{x^3(x-1)}{x(x-1)^2}+\frac{-2x^2+4x+1}{x(x-1)^2}\\ \frac{x^3(x-1)}{x(x-1)^2}=\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{(x+1)(x-1)}{x-1}+\frac{1}{x-1}=\\ =x+1+\frac{1}{x-1}

Second, decompose the fraction 2x2+4x+1x(x1)2\frac{-2x^2+4x+1}{x(x-1)^2} to partial fractions:

2x2+4x+1x(x1)2=Ax+Bx1+C(x1)2\frac{-2x^2+4x+1}{x(x-1)^2}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}

Let's multiply both parts of this equation by x(x1)2x(x-1)^2 and equate the coefficients at equal powers of x:

2x2+4x+1=A(x1)2+Bx(x1)++Cx=Ax22Ax+A+Bx2Bx++Cx=(A+B)x2++(2AB+C)x+A{A+B=22AB+C=4A=1{A=1B=2A=21=3B+C=4+2A=4+21=6{A=1B=3C=6+B=6+(3)=3-2x^2+4x+1=A(x-1)^2+Bx(x-1)+\\ +Cx=Ax^2-2Ax+A+Bx^2-Bx+\\ +Cx=(A+B)x^2+\\ +(-2A-B+C)x+A\\ \begin{cases} A+B=-2\\ -2A-B+C=4\\ A=1 \end{cases}\Rarr\\ \Rarr\begin{cases} A=1\\ B=-2-A=-2-1=-3\\ -B+C=4+2A=4+2\cdot1=6 \end{cases}\Rarr\\ \Rarr\begin{cases} A=1\\ B=-3\\ C=6+B=6+(-3)=3 \end{cases}


x4x32x2+4x+1x(x1)2=x+1+1x1++1x3x1+3(x1)2=x+1+1x2x1+3(x1)2\frac{x^4-x^3-2x^2+4x+1}{x(x-1)^2}=x+1+\frac{1}{x-1}+\\ +\frac{1}{x}-\frac{3}{x-1}+\frac{3}{(x-1)^2}=\\ x+1+\frac{1}{x}-\frac{2}{x-1}+\frac{3}{(x-1)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS