x>0, n>=1, prove that 1 + x + x2 + .....+ x2n >= (2n+1)xn
1+x+x2+...+x2n=(1+x2n)+(x+x2n−1)+...+(xn−1+xn+1)+xn==∑k=0n−1(xk+x2n−k)+xn⩾∑k=0n−12xk⋅x2n−k+xn=2nxn+xn=(2n+1)xn1+x+x^2+...+x^{2n}=\left( 1+x^{2n} \right) +\left( x+x^{2n-1} \right) +...+\left( x^{n-1}+x^{n+1} \right) +x^n=\\=\sum_{k=0}^{n-1}{\left( x^k+x^{2n-k} \right)}+x^n\geqslant \sum_{k=0}^{n-1}{2\sqrt{x^k\cdot x^{2n-k}}}+x^n=2nx^n+x^n=\left( 2n+1 \right) x^n1+x+x2+...+x2n=(1+x2n)+(x+x2n−1)+...+(xn−1+xn+1)+xn==∑k=0n−1(xk+x2n−k)+xn⩾∑k=0n−12xk⋅x2n−k+xn=2nxn+xn=(2n+1)xn
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments