Question #330134

x>0, n>=1, prove that 1 + x + x2 + .....+ x2n >= (2n+1)xn

1
Expert's answer
2022-04-19T02:40:50-0400

1+x+x2+...+x2n=(1+x2n)+(x+x2n1)+...+(xn1+xn+1)+xn==k=0n1(xk+x2nk)+xnk=0n12xkx2nk+xn=2nxn+xn=(2n+1)xn1+x+x^2+...+x^{2n}=\left( 1+x^{2n} \right) +\left( x+x^{2n-1} \right) +...+\left( x^{n-1}+x^{n+1} \right) +x^n=\\=\sum_{k=0}^{n-1}{\left( x^k+x^{2n-k} \right)}+x^n\geqslant \sum_{k=0}^{n-1}{2\sqrt{x^k\cdot x^{2n-k}}}+x^n=2nx^n+x^n=\left( 2n+1 \right) x^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS