Let's solve the system of linear equations using the Cramer's rule.
Δ = ∣ 1 − 3 6 3 2 − 5 2 − 5 2 ∣ = = 1 ⋅ 2 ⋅ 2 + ( − 3 ) ⋅ ( − 5 ) ⋅ 2 + 6 ⋅ 3 ⋅ ( − 5 ) − − 6 ⋅ 2 ⋅ 2 − 1 ⋅ ( − 5 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ 3 ⋅ 2 = = 4 + 30 − 90 − 24 − 25 + 18 = − 87 ; \Delta=\begin{vmatrix}
1& - 3&6\\
3 & 2&-5\\
2&-5&2
\end{vmatrix}=\\
=1\cdot2\cdot2+(-3)\cdot(-5)\cdot2+6\cdot3\cdot(-5)-\\-6\cdot2\cdot2-1\cdot(-5)\cdot(-5)-(-3)\cdot3\cdot2=\\
=4+30-90-24-25+18=-87; Δ = ∣ ∣ 1 3 2 − 3 2 − 5 6 − 5 2 ∣ ∣ = = 1 ⋅ 2 ⋅ 2 + ( − 3 ) ⋅ ( − 5 ) ⋅ 2 + 6 ⋅ 3 ⋅ ( − 5 ) − − 6 ⋅ 2 ⋅ 2 − 1 ⋅ ( − 5 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ 3 ⋅ 2 = = 4 + 30 − 90 − 24 − 25 + 18 = − 87 ;
Δ 1 = ∣ 21 − 3 6 − 30 2 − 5 − 6 − 5 2 ∣ = = 21 ⋅ 2 ⋅ 2 + ( − 3 ) ⋅ ( − 5 ) ⋅ ( − 6 ) + 6 ⋅ ( − 30 ) ⋅ ( − 5 ) − − 6 ⋅ 2 ⋅ ( − 6 ) − 21 ⋅ ( − 5 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ ( − 30 ) ⋅ 2 = = 84 − 90 + 900 + 72 − 525 − 180 = 261 ; \Delta_1=\begin{vmatrix}
21& - 3&6\\
-30 & 2&-5\\
-6&-5&2
\end{vmatrix}=\\
=21\cdot2\cdot2+(-3)\cdot(-5)\cdot(-6)+6\cdot(-30)\cdot(-5)-\\-6\cdot2\cdot(-6)-21\cdot(-5)\cdot(-5)-(-3)\cdot(-30)\cdot2=\\
=84-90+900+72-525-180=261; Δ 1 = ∣ ∣ 21 − 30 − 6 − 3 2 − 5 6 − 5 2 ∣ ∣ = = 21 ⋅ 2 ⋅ 2 + ( − 3 ) ⋅ ( − 5 ) ⋅ ( − 6 ) + 6 ⋅ ( − 30 ) ⋅ ( − 5 ) − − 6 ⋅ 2 ⋅ ( − 6 ) − 21 ⋅ ( − 5 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ ( − 30 ) ⋅ 2 = = 84 − 90 + 900 + 72 − 525 − 180 = 261 ;
Δ 2 = ∣ 1 21 6 3 − 30 − 5 2 − 6 2 ∣ = = 1 ⋅ ( − 30 ) ⋅ 2 + 21 ⋅ ( − 5 ) ⋅ 2 + 6 ⋅ 3 ⋅ ( − 6 ) − − 6 ⋅ ( − 30 ) ⋅ 2 − 1 ⋅ ( − 5 ) ⋅ ( − 6 ) − 21 ⋅ 3 ⋅ 2 = = − 60 − 210 − 108 + 360 − 30 − 126 = − 174 ; \Delta_2=\begin{vmatrix}
1& 21&6\\
3 & - 30&-5\\
2&-6&2
\end{vmatrix}=\\
=1\cdot(-30)\cdot2+21\cdot(-5)\cdot2+6\cdot3\cdot(-6)-\\-6\cdot(-30)\cdot2-1\cdot(-5)\cdot(-6)-21\cdot3\cdot2=\\
=-60-210-108+360-30-126=-174; Δ 2 = ∣ ∣ 1 3 2 21 − 30 − 6 6 − 5 2 ∣ ∣ = = 1 ⋅ ( − 30 ) ⋅ 2 + 21 ⋅ ( − 5 ) ⋅ 2 + 6 ⋅ 3 ⋅ ( − 6 ) − − 6 ⋅ ( − 30 ) ⋅ 2 − 1 ⋅ ( − 5 ) ⋅ ( − 6 ) − 21 ⋅ 3 ⋅ 2 = = − 60 − 210 − 108 + 360 − 30 − 126 = − 174 ;
Δ 3 = ∣ 1 − 3 21 3 2 − 30 2 − 5 − 6 ∣ = = 1 ⋅ 2 ⋅ ( − 6 ) + ( − 3 ) ⋅ ( − 30 ) ⋅ 2 + 21 ⋅ 3 ⋅ ( − 5 ) − − 21 ⋅ 2 ⋅ 2 − 1 ⋅ ( − 30 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ 3 ⋅ ( − 6 ) = = − 12 + 180 − 315 − 84 − 150 − 54 = − 435 ; \Delta_3=\begin{vmatrix}
1& - 3&21\\
3 & 2&-30\\
2&-5&-6
\end{vmatrix}=\\
=1\cdot2\cdot(-6)+(-3)\cdot(-30)\cdot2+21\cdot3\cdot(-5)-\\-21\cdot2\cdot2-1\cdot(-30)\cdot(-5)-(-3)\cdot3\cdot(-6)=\\
=-12+180-315-84-150-54=-435; Δ 3 = ∣ ∣ 1 3 2 − 3 2 − 5 21 − 30 − 6 ∣ ∣ = = 1 ⋅ 2 ⋅ ( − 6 ) + ( − 3 ) ⋅ ( − 30 ) ⋅ 2 + 21 ⋅ 3 ⋅ ( − 5 ) − − 21 ⋅ 2 ⋅ 2 − 1 ⋅ ( − 30 ) ⋅ ( − 5 ) − ( − 3 ) ⋅ 3 ⋅ ( − 6 ) = = − 12 + 180 − 315 − 84 − 150 − 54 = − 435 ;
x = Δ 1 Δ = 261 − 87 − 3 ; y = Δ 2 Δ = − 174 − 87 = 2 ; z = Δ 3 Δ = − 435 − 87 = 5 ; x + y + z = − 3 + 2 + 5 = 4. x=\cfrac{\Delta_1} {\Delta} =\cfrac{261}{-87}-3;\\
y=\cfrac{\Delta_2} {\Delta} =\cfrac{-174}{-87}=2;\\
z=\cfrac{\Delta_3} {\Delta} =\cfrac{-435}{-87}=5;\\
x+y+z=-3+2+5=4. x = Δ Δ 1 = − 87 261 − 3 ; y = Δ Δ 2 = − 87 − 174 = 2 ; z = Δ Δ 3 = − 87 − 435 = 5 ; x + y + z = − 3 + 2 + 5 = 4.
Comments