Explanations & Calculations
Try isolating a \small a a on one side by doing addition, subtraction and division where appropriate. y = a x 2 + b x − c y + c = a x 2 + b x − c + c ⋯ [ remove c ] y + c = a x 2 + b x y + c − b x = a x 2 + b x − b x ⋯ [ remove bx ] y − b x + c = a x 2 y − b x + c x 2 = a x 2 x 2 ⋯ ⋯ ⋯ [ remove x 2 ] a = y − b x + c x 2 \qquad\qquad
\begin{aligned}
\small y&=\small ax^2+bx-c\\
\small y+\color{red}{c}&=\small ax^2+bx-\cancel{c}+\cancel{\color{red}c}\cdots[\text{remove c}]\\
\small y+c&=\small ax^2+bx\\
\small y+c-\color{red} bx&=\small ax^2+\cancel{bx}-\cancel{\color{red} bx}\cdots[\text{remove bx}]\\
\small y-bx+c&=\small ax^2\\
\small \frac{y-bx+c}{\color{red} x^2}&=\small \frac{a\cancel{x^2}}{\cancel{\color{red}x^2}}\cdots\cdots\cdots[\text{remove}\,\,x^2]\\
\small a&=\small \frac{y-bx+c}{x^2}
\end{aligned} y y + c y + c y + c − b x y − b x + c x 2 y − b x + c a = a x 2 + b x − c = a x 2 + b x − c + c ⋯ [ remove c ] = a x 2 + b x = a x 2 + b x − b x ⋯ [ remove bx ] = a x 2 = x 2 a x 2 ⋯⋯⋯ [ remove x 2 ] = x 2 y − b x + c
Comments