Answer to Question #303672 in Algebra for Vishal

Question #303672

Let T : R4--> R4 be the linear transfoi-mation




defined by




T(x1, X2, X3, X4) = (— x2, X1, — x4, X3).




Check that T4 = I. Also, find the minimal




polynomial of T.

1
Expert's answer
2022-03-01T17:51:58-0500

T(x1, x2, x3, x4) =(−x2, x1, −x4, x3)

We should write in matrix firstly:

T=[0100100000010010];T= \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} ;


In order to show that T matrix does not have real eigen values, should calculate (λ×IA)(\lambda\times I-A) matrix:

(λ×IA)=λ×[1000010000100001](\lambda\times I-A)= \lambda \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} - [0100100000010010]=\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} =


[λ0000λ0000λ0000λ][0100100000010010]=\begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \\ \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} = [λ1001λ0000λ1001λ];\begin{bmatrix} \lambda & 1 & 0 & 0 \\ -1 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & -1 & \lambda \\ \end{bmatrix};


And find det of (λ×IA)(\lambda\times I-A) matrix:

λ×(1)1+1[λ000λ101λ]+1×(1)1+2×\lambda \times (-1)^{1+1} \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \\ \end{bmatrix}+ 1 \times (-1)^{1+2} \times [1000λ101λ]=\begin{bmatrix} -1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \\ \end{bmatrix}=


λ×(λ3+λ)(λ21)=\lambda \times (\lambda^3+ \lambda) -(-\lambda^2-1)= λ×(λ3+λ)(λ21)=λ4+λ2+λ2+1=\lambda \times (\lambda^3+ \lambda) -(-\lambda^2-1)= \lambda^4+\lambda^2+\lambda^2+1= λ4+2λ2+1;\lambda^4+2\lambda^2+1;

And then will equate the polynomial formed by the eigen values to 0:

λ4+2λ2+1=0\lambda^4+2\lambda^2+1=0

λ2\lambda^2 is greater than or equal to 0. The left-hand side of the equation is greater than or equal to 1, but the right-hand side of the equation is 0. The equality cannot be true. So this equation doesn't have real solutions. Thus,the matrix T does not have real eigen values.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment