T(x1, x2, x3, x4) =(−x2, x1, −x4, x3)
We should write in matrix firstly:
T = [ 0 − 1 0 0 1 0 0 0 0 0 0 − 1 0 0 1 0 ] ; T=
\begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix} ; T = ⎣ ⎡ 0 1 0 0 − 1 0 0 0 0 0 0 1 0 0 − 1 0 ⎦ ⎤ ;
In order to show that T matrix does not have real eigen values, should calculate ( λ × I − A ) (\lambda\times I-A) ( λ × I − A ) matrix:
( λ × I − A ) = λ × [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] − (\lambda\times I-A)=
\lambda \times
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} - ( λ × I − A ) = λ × ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ⎦ ⎤ − [ 0 − 1 0 0 1 0 0 0 0 0 0 − 1 0 0 1 0 ] = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix} = ⎣ ⎡ 0 1 0 0 − 1 0 0 0 0 0 0 1 0 0 − 1 0 ⎦ ⎤ =
[ λ 0 0 0 0 λ 0 0 0 0 λ 0 0 0 0 λ ] − [ 0 − 1 0 0 1 0 0 0 0 0 0 − 1 0 0 1 0 ] = \begin{bmatrix}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda \\
\end{bmatrix} -
\begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix} = ⎣ ⎡ λ 0 0 0 0 λ 0 0 0 0 λ 0 0 0 0 λ ⎦ ⎤ − ⎣ ⎡ 0 1 0 0 − 1 0 0 0 0 0 0 1 0 0 − 1 0 ⎦ ⎤ = [ λ 1 0 0 − 1 λ 0 0 0 0 λ 1 0 0 − 1 λ ] ; \begin{bmatrix}
\lambda & 1 & 0 & 0 \\
-1 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & -1 & \lambda \\
\end{bmatrix}; ⎣ ⎡ λ − 1 0 0 1 λ 0 0 0 0 λ − 1 0 0 1 λ ⎦ ⎤ ;
And find det of ( λ × I − A ) (\lambda\times I-A) ( λ × I − A ) matrix:
λ × ( − 1 ) 1 + 1 [ λ 0 0 0 λ 1 0 − 1 λ ] + 1 × ( − 1 ) 1 + 2 × \lambda \times (-1)^{1+1}
\begin{bmatrix}
\lambda & 0 & 0 \\
0 & \lambda & 1 \\
0 & -1 & \lambda \\
\end{bmatrix}+
1 \times (-1)^{1+2} \times λ × ( − 1 ) 1 + 1 ⎣ ⎡ λ 0 0 0 λ − 1 0 1 λ ⎦ ⎤ + 1 × ( − 1 ) 1 + 2 × [ − 1 0 0 0 λ 1 0 − 1 λ ] = \begin{bmatrix}
-1 & 0 & 0 \\
0 & \lambda & 1 \\
0 & -1 & \lambda \\
\end{bmatrix}= ⎣ ⎡ − 1 0 0 0 λ − 1 0 1 λ ⎦ ⎤ =
λ × ( λ 3 + λ ) − ( − λ 2 − 1 ) = \lambda \times (\lambda^3+ \lambda) -(-\lambda^2-1)= λ × ( λ 3 + λ ) − ( − λ 2 − 1 ) = λ × ( λ 3 + λ ) − ( − λ 2 − 1 ) = λ 4 + λ 2 + λ 2 + 1 = \lambda \times (\lambda^3+ \lambda) -(-\lambda^2-1)= \lambda^4+\lambda^2+\lambda^2+1= λ × ( λ 3 + λ ) − ( − λ 2 − 1 ) = λ 4 + λ 2 + λ 2 + 1 = λ 4 + 2 λ 2 + 1 ; \lambda^4+2\lambda^2+1; λ 4 + 2 λ 2 + 1 ;
And then will equate the polynomial formed by the eigen values to 0:
λ 4 + 2 λ 2 + 1 = 0 \lambda^4+2\lambda^2+1=0 λ 4 + 2 λ 2 + 1 = 0
λ 2 \lambda^2 λ 2 is greater than or equal to 0. The left-hand side of the equation is greater than or equal to 1, but the right-hand side of the equation is 0. The equality cannot be true. So this equation doesn't have real solutions. Thus,the matrix T does not have real eigen values.
Comments
Leave a comment