Solve the equation
(a) 5(2 − x) ≤ 3x + 2 < 8
(b) 1/8 = 23x−4,
(c) logbx + logb(x − 4) = logb21
(d) log42x = 2
a)
10−5x≤3x+210-5x\le3x+210−5x≤3x+2
8≤8x8\le8x8≤8x
1≤ x1\le\>x1≤x
3x+2<83x+2<83x+2<8
3x<63x<63x<6
x<2x<2x<2
1≤ x<21\le\>x<21≤x<2
b)
2−3=23x−42^{-3}=2^{3x-4}2−3=23x−4
−3=3x−4-3=3x-4−3=3x−4
1=3x1=3x1=3x
x=13x=\frac{1}{3}x=31
c)
Logb_bb [x(x−4)]=\begin{bmatrix} x(x-4) \end{bmatrix}=[x(x−4)]= logb21_b21b21
x2−4x−21=0x^2-4x-21=0x2−4x−21=0
x2−7x+3x−21=0x(x−7)+3(x−7)=0(x+3)(x−7)=0x=−3 or 7x^2-7x+3x-21=0\\ x(x-7)+3(x-7)=0\\(x+3)(x-7)=0\\ x=-3\>or\>7x2−7x+3x−21=0x(x−7)+3(x−7)=0(x+3)(x−7)=0x=−3or7
d)
2x=422x=4^22x=42
x=8x=8x=8
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments