y=eaxcos2xsinx⇒y=eax(2cos2x+1)sinx⇒y=21eaxcos2xsinx+21eaxsinx
Using cosx=2eix+e−ix,sinx=2eix−e−ix
y=21eax(2e2ix+e−2ix)(2eix−e−ix)+21eax(2eix−e−ix)=81eax(e3ix−eix+e−ix−e−3ix)+41(e(a+i)x−e(a−i)x)=81(e(a+3i)x−e(a+i)x+e(a+i)x−e(a−3i)x)+41(e(a+i)x−e(a−i)x)=81(ex(a+3i)−ex(a−3i))+41(ex(a+i)−ex(a−i))
Now, we know that
if y=eax
then, yn=aneax .
So, y=81(ex(a+3i)−ex(a−3i))+41(ex(a+i)−ex(a−i))
yn=81((a+3i)nex(a+3i)−(a−3i)nex(a−3i))+41((a+i)nex(a+i)−(a−i)nex(a−i))
Comments