Question #287650

Find nth derivative of e^ax cos² xsinx

1
Expert's answer
2022-02-07T12:20:24-0500

Solution:

y=eaxcos2xsinxy=eax(cos2x+12)sinxy=12eaxcos2xsinx+12eaxsinxy=e^{ax}\cos^2x \sin x \\\Rightarrow y=e^{ax}(\dfrac{\cos2x+1}2) \sin x \\\Rightarrow y=\frac12e^{ax}\cos2x\sin x+\frac12e^{ax}\sin x

Using cosx=eix+eix2,sinx=eixeix2\cos x=\dfrac{e^{ix}+e^{-ix}}2, \sin x=\dfrac{e^{ix}-e^{-ix}}2

y=12eax(e2ix+e2ix2)(eixeix2)+12eax(eixeix2)=18eax(e3ixeix+eixe3ix)+14(e(a+i)xe(ai)x)=18(e(a+3i)xe(a+i)x+e(a+i)xe(a3i)x)+14(e(a+i)xe(ai)x)=18(ex(a+3i)ex(a3i))+14(ex(a+i)ex(ai))y=\frac12e^{ax}(\dfrac{e^{2ix}+e^{-2ix}}2)(\dfrac{e^{ix}-e^{-ix}}2)+\frac12e^{ax}(\dfrac{e^{ix}-e^{-ix}}2) \\=\frac18e^{ax}(e^{3ix}-e^{ix}+e^{-ix}-e^{-3ix})+\frac14({e^{(a+i)x}-e^{(a-i)x}}) \\=\frac18(e^{(a+3i)x}-e^{(a+i)x}+e^{(a+i)x}-e^{(a-3i)x})+\frac14({e^{(a+i)x}-e^{(a-i)x}}) \\=\frac18({e^{x\left(a+3i\right)}-e^{x\left(a-3i\right)}})+\frac{1}{4}\left(e^{x\left(a+i\right)}-e^{x\left(a-i\right)}\right)

Now, we know that

if y=eaxy=e^{ax}

then, yn=aneaxy_n=a^ne^{ax} .

So, y=18(ex(a+3i)ex(a3i))+14(ex(a+i)ex(ai))y=\frac18({e^{x\left(a+3i\right)}-e^{x\left(a-3i\right)}})+\frac{1}{4}\left(e^{x\left(a+i\right)}-e^{x\left(a-i\right)}\right)

yn=18((a+3i)nex(a+3i)(a3i)nex(a3i))+14((a+i)nex(a+i)(ai)nex(ai))y_n=\frac18({(a+3i)^ne^{x\left(a+3i\right)}-(a-3i)^ne^{x\left(a-3i\right)}})+\frac{1}{4}\left((a+i)^ne^{x\left(a+i\right)}-(a-i)^ne^{x\left(a-i\right)}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS