(a)
x2−3x≥10
x2−3x−10≥0
(x+2)(x−5)≥0
x∈(−∞,−2]∪[5,∞)
(x−5)2<4
−2<x−5<2
3<x<7
Answer: x∈[5,7).
(b)
x2+4x−21≤0
(x+7)(x−3)≤0
x∈[−7,3]
x2−9x+8>0
(x−1)(x−8)>0
x∈(−∞,1)∪(8,∞) Answer: x∈[−7,1).
(c)
x2+x−2>0
(x+2)(x−1)>0
x∈(−∞,−2)∪(1,∞)
x2−2x−3≥0
(x+1)(x−3)≥0
x∈(−∞,−1]∪[3,∞) Answer: x∈(−∞,−2)∪[3,∞).
Comments