Question #284072

find the set of values of x for which:

(a) x^2-3x>=10 and (x-5)^2<4

(b) x^2+4x-21<=0 and x^2-9x+8>0

(c) x^2+x-2>0 and x^2-2x-3>=0


1
Expert's answer
2022-01-03T19:21:52-0500

(a)


x23x10x^2-3x\geq10

x23x100x^2-3x-10\geq0

(x+2)(x5)0(x+2)(x-5)\geq0

x(,2][5,)x\in(-\infin, -2]\cup[5, \infin)

(x5)2<4(x-5)^2<4

2<x5<2-2<x-5<2

3<x<73<x<7

Answer: x[5,7).x\in[5, 7).


(b)


x2+4x210x^2+4x-21\leq0

(x+7)(x3)0(x+7)(x-3)\leq0

x[7,3]x\in[-7,3]

x29x+8>0x^2-9x+8>0

(x1)(x8)>0(x-1)(x-8)>0

x(,1)(8,)x\in(-\infin, 1)\cup (8, \infin)

Answer: x[7,1).x\in[-7, 1).


(c)


x2+x2>0x^2+x-2>0

(x+2)(x1)>0(x+2)(x-1)>0

x(,2)(1,)x\in(-\infin, -2)\cup (1, \infin)

x22x30x^2-2x-3\geq0


(x+1)(x3)0(x+1)(x-3)\geq0

x(,1][3,)x\in(-\infin, -1]\cup[3, \infin)

Answer: x(,2)[3,).x\in(-\infin, -2)\cup[3, \infin).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS