Question #282692

Solve the following Non-Homogeneous systems by Gauss elimination and Gauss




Jordan Method.




a) 2x + y + 4z = 12




8x - 3y + 2z = 20 4x + 11y - z = 33

1
Expert's answer
2021-12-28T11:18:02-0500

Solution:

By Gauss elimination (or Gauss jordan):

{2x+y+4z=128x3y+2z=204x+11yz=33\left\{\begin{array}{l} 2 x+y+4 z=12 \\ 8 x-3 y+2 z=20 \\ 4 x+11 y-z=33 \end{array}\right.

Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)

(2141283220411133)\left(\begin{array}{ccc|c} 2 & 1 & 4 & 12 \\ 8 & -3 & 2 & 20 \\ 4 & 11 & -1 & 33 \end{array}\right)

R1/2R1\mathrm{R}_{1} / 2 \rightarrow \mathrm{R}_{1} (divide the 1 row by 2 )

(10.52683220411133)\left(\begin{array}{ccc|c} 1 & 0.5 & 2 & 6 \\ 8 & -3 & 2 & 20 \\ 4 & 11 & -1 & 33 \end{array}\right)

R28R1R2\mathrm{R}_{2}-8 \mathrm{R}_{1} \rightarrow \mathrm{R}_{2} (multiply 1 row by 8 and subtract it from 2 row);

R34R1R3\mathrm{R}_{3}-4 \mathrm{R}_{1} \rightarrow \mathrm{R}_{3} (multiply 1 row by 4 and subtract it from 3 row)

(10.5260714280999)\left(\begin{array}{ccc|c} 1 & 0.5 & 2 & 6 \\ 0 & -7 & -14 & -28 \\ 0 & 9 & -9 & 9 \end{array}\right)

R2/7R2\mathrm{R}_{2} /-7 \rightarrow \mathrm{R}_{2} (divide the 2 row by -7 )

(10.52601240999)\left(\begin{array}{ccc|c} 1 & 0.5 & 2 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 9 & -9 & 9 \end{array}\right)

R10.5R2R1\mathrm{R}_{1}-0.5 \mathrm{R}_{2} \rightarrow \mathrm{R}_{1} (multiply 2 row by 0.5 and subtract it from 1 row);

R39R2R3\mathrm{R}_{3}-9 \mathrm{R}_{2} \rightarrow \mathrm{R}_{3} (multiply 2 row by 9 and subtract it from 3 row)

(10140124002727)\left(\begin{array}{ccc|c} 1 & 0 & 1 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & -27 & -27 \end{array}\right)

R3/27R3\mathrm{R}_{3} /-27 \rightarrow \mathrm{R}_{3} (divide the 3 row by -27 )

(101401240011)\left(\begin{array}{lll|l} 1 & 0 & 1 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1 \end{array}\right)

R11R3R1\mathrm{R}_{1}-1 \mathrm{R}_{3} \rightarrow \mathrm{R}_{1} (multiply 3 row by 1 and subtract it from 1 row);

R22R3R2\mathrm{R}_{2}-2 \mathrm{R}_{3} \rightarrow \mathrm{R}_{2} (multiply 3 row by 2 and subtract it from 2 row)

(100301020011)\left(\begin{array}{lll|l} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array}\right)

Thus, x=3,y=2,z=1x=3,y=2,z=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS