By Gauss elimination (or Gauss jordan):
{ 2 x + y + 4 z = 12 8 x − 3 y + 2 z = 20 4 x + 11 y − z = 33 \left\{\begin{array}{l}
2 x+y+4 z=12 \\
8 x-3 y+2 z=20 \\
4 x+11 y-z=33
\end{array}\right. ⎩ ⎨ ⎧ 2 x + y + 4 z = 12 8 x − 3 y + 2 z = 20 4 x + 11 y − z = 33
Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)
( 2 1 4 12 8 − 3 2 20 4 11 − 1 33 ) \left(\begin{array}{ccc|c}
2 & 1 & 4 & 12 \\
8 & -3 & 2 & 20 \\
4 & 11 & -1 & 33
\end{array}\right) ⎝ ⎛ 2 8 4 1 − 3 11 4 2 − 1 12 20 33 ⎠ ⎞
R 1 / 2 → R 1 \mathrm{R}_{1} / 2 \rightarrow \mathrm{R}_{1} R 1 /2 → R 1 (divide the 1 row by 2 )
( 1 0.5 2 6 8 − 3 2 20 4 11 − 1 33 ) \left(\begin{array}{ccc|c}
1 & 0.5 & 2 & 6 \\
8 & -3 & 2 & 20 \\
4 & 11 & -1 & 33
\end{array}\right) ⎝ ⎛ 1 8 4 0.5 − 3 11 2 2 − 1 6 20 33 ⎠ ⎞
R 2 − 8 R 1 → R 2 \mathrm{R}_{2}-8 \mathrm{R}_{1} \rightarrow \mathrm{R}_{2} R 2 − 8 R 1 → R 2 (multiply 1 row by 8 and subtract it from 2 row);
R 3 − 4 R 1 → R 3 \mathrm{R}_{3}-4 \mathrm{R}_{1} \rightarrow \mathrm{R}_{3} R 3 − 4 R 1 → R 3 (multiply 1 row by 4 and subtract it from 3 row)
( 1 0.5 2 6 0 − 7 − 14 − 28 0 9 − 9 9 ) \left(\begin{array}{ccc|c}
1 & 0.5 & 2 & 6 \\
0 & -7 & -14 & -28 \\
0 & 9 & -9 & 9
\end{array}\right) ⎝ ⎛ 1 0 0 0.5 − 7 9 2 − 14 − 9 6 − 28 9 ⎠ ⎞
R 2 / − 7 → R 2 \mathrm{R}_{2} /-7 \rightarrow \mathrm{R}_{2} R 2 / − 7 → R 2 (divide the 2 row by -7 )
( 1 0.5 2 6 0 1 2 4 0 9 − 9 9 ) \left(\begin{array}{ccc|c}
1 & 0.5 & 2 & 6 \\
0 & 1 & 2 & 4 \\
0 & 9 & -9 & 9
\end{array}\right) ⎝ ⎛ 1 0 0 0.5 1 9 2 2 − 9 6 4 9 ⎠ ⎞
R 1 − 0.5 R 2 → R 1 \mathrm{R}_{1}-0.5 \mathrm{R}_{2} \rightarrow \mathrm{R}_{1} R 1 − 0.5 R 2 → R 1 (multiply 2 row by 0.5 and subtract it from 1 row);
R 3 − 9 R 2 → R 3 \mathrm{R}_{3}-9 \mathrm{R}_{2} \rightarrow \mathrm{R}_{3} R 3 − 9 R 2 → R 3 (multiply 2 row by 9 and subtract it from 3 row)
( 1 0 1 4 0 1 2 4 0 0 − 27 − 27 ) \left(\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 0 & -27 & -27
\end{array}\right) ⎝ ⎛ 1 0 0 0 1 0 1 2 − 27 4 4 − 27 ⎠ ⎞
R 3 / − 27 → R 3 \mathrm{R}_{3} /-27 \rightarrow \mathrm{R}_{3} R 3 / − 27 → R 3 (divide the 3 row by -27 )
( 1 0 1 4 0 1 2 4 0 0 1 1 ) \left(\begin{array}{lll|l}
1 & 0 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 1
\end{array}\right) ⎝ ⎛ 1 0 0 0 1 0 1 2 1 4 4 1 ⎠ ⎞
R 1 − 1 R 3 → R 1 \mathrm{R}_{1}-1 \mathrm{R}_{3} \rightarrow \mathrm{R}_{1} R 1 − 1 R 3 → R 1 (multiply 3 row by 1 and subtract it from 1 row);
R 2 − 2 R 3 → R 2 \mathrm{R}_{2}-2 \mathrm{R}_{3} \rightarrow \mathrm{R}_{2} R 2 − 2 R 3 → R 2 (multiply 3 row by 2 and subtract it from 2 row)
( 1 0 0 3 0 1 0 2 0 0 1 1 ) \left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right) ⎝ ⎛ 1 0 0 0 1 0 0 0 1 3 2 1 ⎠ ⎞
Thus, x = 3 , y = 2 , z = 1 x=3,y=2,z=1 x = 3 , y = 2 , z = 1
Comments