P ( x ) = 6 x 3 + 5 x 2 − 2 x − 1 P(x)=6x^3+5x^2-2x-1 P ( x ) = 6 x 3 + 5 x 2 − 2 x − 1
= 6 x 3 + 6 x 2 − x 2 − x − x − 1 =6x^3+6x^2-x^2-x-x-1 = 6 x 3 + 6 x 2 − x 2 − x − x − 1
= 6 x 2 ( x + 1 ) − x ( x + 1 ) − ( x + 1 ) =6x^2(x+1)-x(x+1)-(x+1) = 6 x 2 ( x + 1 ) − x ( x + 1 ) − ( x + 1 )
= ( x + 1 ) ( 6 x 2 − x − 1 ) =(x+1)(6x^2-x-1) = ( x + 1 ) ( 6 x 2 − x − 1 ) Let 6 x 2 − x − 1 = 0. 6x^2-x-1=0. 6 x 2 − x − 1 = 0.
D = ( − 1 ) 2 − 4 ( 6 ) ( − 1 ) = 25 D=(-1)^2-4(6)(-1)=25 D = ( − 1 ) 2 − 4 ( 6 ) ( − 1 ) = 25
x = 1 ± 25 2 ( 6 ) = 1 ± 5 12 x=\dfrac{1\pm\sqrt{25}}{2(6)}=\dfrac{1\pm5}{12} x = 2 ( 6 ) 1 ± 25 = 12 1 ± 5
x 1 = 1 − 5 12 = − 1 3 , x 2 = 1 + 5 12 = 1 2 x_1=\dfrac{1-5}{12}=-\dfrac{1}{3}, x_2=\dfrac{1+5}{12}=\dfrac{1}{2} x 1 = 12 1 − 5 = − 3 1 , x 2 = 12 1 + 5 = 2 1 Then
6 x 2 − x − 1 = 6 ( x + 1 3 ) ( x − 1 2 ) 6x^2-x-1=6(x+\dfrac{1}{3})(x-\dfrac{1}{2}) 6 x 2 − x − 1 = 6 ( x + 3 1 ) ( x − 2 1 )
= ( 3 x + 1 ) ( 2 x − 2 ) =(3x+1)(2x-2) = ( 3 x + 1 ) ( 2 x − 2 )
P ( x ) = 6 x 3 + 5 x 2 − 2 x − 1 P(x)=6x^3+5x^2-2x-1 P ( x ) = 6 x 3 + 5 x 2 − 2 x − 1
= ( x + 1 ) ( 3 x + 1 ) ( 2 x − 2 ) =(x+1)(3x+1)(2x-2) = ( x + 1 ) ( 3 x + 1 ) ( 2 x − 2 ) Zeros: − 1 , − 1 3 , 1 2 -1, -\dfrac{1}{3}, \dfrac{1}{2} − 1 , − 3 1 , 2 1
Comments