Search results for If v=(y²+z²-x²) î+ (z²+x²-y²) j^+(x²+y²-z²) k^, then find to it's divergence v and curl v?
div V→=∂∂ x(y2+z2−x2)+∂∂ y(z2+x2−y2)+∂∂ z(x2+y2−z2)\overrightarrow{V}=\frac{\partial}{\partial\>x}(y^2+z^2-x^2)+\frac{\partial}{\partial\>y}(z^2+x^2-y^2)+\frac{\partial}{\partial\>z}(x^2+y^2-z^2)V=∂x∂(y2+z2−x2)+∂y∂(z2+x2−y2)+∂z∂(x2+y2−z2)
=−2−2y−2z=-2-2y-2z=−2−2y−2z
=−2(x+y+z)=-2(x+y+z)=−2(x+y+z)
CurlV→Curl{\overrightarrow{V}}CurlV .∣ijk∂∂ x∂∂ y∂∂ zy2+z2−x2z2+x2−y2x2+y2−z2∣\begin{vmatrix} i & j&k\\ \frac{\partial}{\partial\>x}&\frac{\partial}{\partial\>y}&\frac{\partial}{\partial\>z} \\ y^2+z^2-x^2&z^2+x^2-y^2&x^2+y^2-z^2 \end{vmatrix}∣∣i∂x∂y2+z2−x2j∂y∂z2+x2−y2k∂z∂x2+y2−z2∣∣
=(2y−2z)i~+(2z−2x)j~+(2x−2y)k~=(2y-2z)\utilde{i}+(2z-2x)\utilde{j}+(2x-2y)\utilde{k}=(2y−2z)i+(2z−2x)j+(2x−2y)k
=2(y−z)i~−2(x−z)j~+2(x−y)k~=2(y-z)\utilde{i}-2(x-z)\utilde{j}+2(x-y)\utilde{k}=2(y−z)i−2(x−z)j+2(x−y)k
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments