Question #279480

Search results for If v=(y²+z²-x²) î+ (z²+x²-y²) j^+(x²+y²-z²) k^, then find to it's divergence v and curl v? 



1
Expert's answer
2021-12-15T08:12:29-0500


div V=x(y2+z2x2)+y(z2+x2y2)+z(x2+y2z2)\overrightarrow{V}=\frac{\partial}{\partial\>x}(y^2+z^2-x^2)+\frac{\partial}{\partial\>y}(z^2+x^2-y^2)+\frac{\partial}{\partial\>z}(x^2+y^2-z^2)


=22y2z=-2-2y-2z

=2(x+y+z)=-2(x+y+z)




CurlVCurl{\overrightarrow{V}} .ijkxyzy2+z2x2z2+x2y2x2+y2z2\begin{vmatrix} i & j&k\\ \frac{\partial}{\partial\>x}&\frac{\partial}{\partial\>y}&\frac{\partial}{\partial\>z} \\ y^2+z^2-x^2&z^2+x^2-y^2&x^2+y^2-z^2 \end{vmatrix}



=(2y2z)i~+(2z2x)j~+(2x2y)k~=(2y-2z)\utilde{i}+(2z-2x)\utilde{j}+(2x-2y)\utilde{k}


=2(yz)i~2(xz)j~+2(xy)k~=2(y-z)\utilde{i}-2(x-z)\utilde{j}+2(x-y)\utilde{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS