A new smartphone can be purchased for $840. The phoneโs value has a half-life of 23 months and can be modelled by the function
๐ = 840(0.5) ๐ก/23
Algebraically determine how long, to the nearest tenth of a month, it takes the smartphone to be worth $601
V=840(0.5)t23V=840(0.5)^\frac {t} {23}V=840(0.5)23tโ
Given V=601V=601V=601
601=840(0.5)t23601=840(0.5)^\frac {t} {23}601=840(0.5)23tโ
601840=(0.5)t23\frac {601}{840}=(0.5)^\frac {t} {23}840601โ=(0.5)23tโ
Log(601840)=t23Log0.5Log(\frac {601} {840}) =\frac {t} {23} Log 0.5Log(840601โ)=23tโLog0.5
โ0.145404814=t23รโ0.301029996-0.145404814=\frac {t} {23} ร-0.301029996โ0.145404814=23tโรโ0.301029996
t=23ร0.1454048140.301029996t=\frac {23ร0.145404814}{0.301029996}t=0.30102999623ร0.145404814โ
t=11.1095t=11.1095t=11.1095
t=11.11monthst=11.11monthst=11.11months
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments