Answer to Question #269569 in Algebra for Tahmina

Question #269569

Problem A.3

The formula for calculating the sum of all natural integers from 1 to n is well-known: Sn =1+2+3+...+n= n2 +n

 2

Similary, we know about the formula for calculating the sum of the first n squares:

n3 n2 n Qn =1·1+2·2+3·3+...+n·n= 3 + 2 + 6

Now, we reduce one of the two multipliers of each product by one to get the following sum: Mn =0·1+1·2+2·3+3·4+...+(n−1)·n

Find an explicit formula for calculating the sum Mn.


1
Expert's answer
2021-11-22T15:46:49-0500

Given that sum of all natural numbers 1 to n is:

Sn=1+2+3+.....+n=n2+n2(1)S_{n} = 1 + 2 + 3+ ..... + n = \frac{n\\^2 + n }{2} ------- (1)


Sum of first n natural numbers square is:

Sn=1.1+2.2+3.3+.....+n.nn33+n22+n6=..................(2)S_{n} = 1.1 + 2.2 + 3.3 + ..... + n.n \\ \frac{n\\^3}{3} + \frac{n\\^2}{2}+ \frac{n}{6}= .................. (2)

Substract equation (1) from equation (2)


=(1.1+2.2+3.3+.....+n.n)(1+2+3+.....+n)=(1.1 + 2.2 + 3.3 + ..... + n.n) - (1 + 2 + 3+ ..... + n)

=(1.11+2.22+3.33+.....+n.nn)=(1.1 - 1+ 2.2 -2 + 3.3 -3 + ..... + n.n - n)

=n33+n22+n6n2+n2= \frac{n\\^3}{3} + \frac{n\\^2}{2}+ \frac{n}{6} - \frac{n\\^2 + n }{2}

=0+2(21)+3(31)+.....+n(n1)=0+ 2(2 -1) + 3(3 -1) + ..... + n(n - 1)

=0+1.2+2.3+.....+n(n1)=0+ 1. 2 + 2.3 + ..... + n(n - 1)

=2n32n6=\frac{ 2n\\^3 - 2n}{6}

=n3n3=\frac{ n\\^3 - n}{3}

Th explicit formula for calculating the sum Mn is =n33n3=\frac{ n\\^3 }{3} - \frac{n}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment