Problem A.3
The formula for calculating the sum of all natural integers from 1 to n is well-known: Sn =1+2+3+...+n= n2 +n
2
Similary, we know about the formula for calculating the sum of the first n squares:
n3 n2 n Qn =1·1+2·2+3·3+...+n·n= 3 + 2 + 6
Now, we reduce one of the two multipliers of each product by one to get the following sum: Mn =0·1+1·2+2·3+3·4+...+(n−1)·n
Find an explicit formula for calculating the sum Mn.
Given that sum of all natural numbers 1 to n is:
"S_{n} = 1 + 2 + 3+ ..... + n = \\frac{n\\\\^2 + n }{2} ------- (1)"
Sum of first n natural numbers square is:
"S_{n} = 1.1 + 2.2 + 3.3 + ..... + n.n \\\\\n\\frac{n\\\\^3}{3} + \\frac{n\\\\^2}{2}+ \\frac{n}{6}= .................. (2)"
Substract equation (1) from equation (2)
"=(1.1 + 2.2 + 3.3 + ..... + n.n) - (1 + 2 + 3+ ..... + n)"
"=(1.1 - 1+ 2.2 -2 + 3.3 -3 + ..... + n.n - n)"
"= \\frac{n\\\\^3}{3} + \\frac{n\\\\^2}{2}+ \\frac{n}{6} - \\frac{n\\\\^2 + n }{2}"
"=0+ 2(2 -1) + 3(3 -1) + ..... + n(n - 1)"
"=0+ 1. 2 + 2.3 + ..... + n(n - 1)"
"=\\frac{ 2n\\\\^3 - 2n}{6}"
"=\\frac{ n\\\\^3 - n}{3}"
Th explicit formula for calculating the sum Mn is "=\\frac{ n\\\\^3 }{3} - \\frac{n}{3}"
Comments
Leave a comment