Question #267396

Prove by mathematical induction that n^2+n < 2^n whenever n is an integer greater

than 4.


1
Expert's answer
2021-11-22T06:19:53-0500

Inducive base: We check for n=5, then we have the following: 52+5=30<32=25which shows that the statement is true for n=5.Inducive hypothesis: we now assume that the statement is true for every k>4 i.ek2+k<2k,k<4Inductive step:(k+1)2+k+1=k2+k+2k+2<2k+2k+2()Note that 2k=r=0k(kr)    2k+1=2r=0k(kr)    for k > 4, 2k>2n+2From * we have that(k+1)2+k+1<2k+2k=22k=2k+1Hence we have our result\text{\underline{Inducive base:} We check for $n=5$, then we have the following: } \\ 5^2 + 5 = 30 < 32 = 2^5 \\ \text{which shows that the statement is true for } n=5.\\ \text{\underline{Inducive hypothesis:} we now assume that the statement is true for every $k > 4$ i.e} \\ k^2 + k < 2^k , k<4\\ \text{\underline{Inductive step:}}\\ (k+1)^2+k+1\\ =k^2+k+2k+2 < 2^k+2^k + 2\quad -(*)\\ \text{Note that $2^k= \displaystyle{\sum^k_{r=0}\begin{pmatrix}k\\r \end{pmatrix}}$} \\ \implies 2^{k+1}= 2\cdot\displaystyle{\sum^k_{r=0}\begin{pmatrix}k\\r \end{pmatrix}}\\ \implies \text{for k > 4, }2^k>2n+2\\ \text{From * we have that}\\ (k+1)^2+k+1<2^k+2^k\\ =2\cdot 2^k = 2^{k+1}\\ \text{Hence we have our result}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS