Answer to Question #266090 in Algebra for Israel

Question #266090


  1. Given a flow diagram, Calculate the values of the output: 2,5,4,3,9.
  2. If A=2 and B=5, Determine the values of a^2+ab+b^2.
  3. Expand and calculate: 2^2 x 3^2.
  4. Calculate: 5x (-5) + 6x (-8) -16.
  5. Simplify: a) 4x (x + 2); b) (3x + 5)(2x + 3); c) 27x y^3 /3x^3 y^2.

6. Solve for x: a) 10x - 6= 5x - 4; b) 4x (2x - 1) = 2(3 - x).

7. Given a triangle KLM with an unknown angle, calculate the value of x if K= 12, L= 23, and M= x.



1
Expert's answer
2022-02-08T00:16:25-0500
  1. There is no the diagram
  2. a^2 + ab + b^2 ="a^2 + ab + b^2 = 2^2 + 5 \\cdot 2 + 5^2 = 2\\cdot2 + 5\\cdot2 + 5\\cdot5 = 4 + 10 + 25 = 14 + 25 = 39"
  3. "2^2 \\cdot 3^2 = (2\\cdot2) \\cdot (3\\cdot3) = 4 \\cdot 9 = 36"
  4. "5\\cdot(-5) + 6\\cdot(-8) - 16 = -25 + (-48) - 16 = -25 - 48 - 16 = -73 - 16 = -89"
  5. a) if 4x (x + 2) is "4\\cdot(x+2)", then "4\\cdot(x+2) = 4\\cdot x + 4\\cdot2" (by distributivity property) "=4x + 8"

if 4x (x + 2) is "4x\\cdot(x+2)" , then "4x\\cdot(x+2) = 4x\\cdot x + 4x\\cdot2 = 4x^2 + 8x" ("4x\\cdot2 = 4\\cdot2\\cdot x" by associativity property)

b) "(3x + 5)(2x + 3) = 3x\\cdot(2x + 3) + 5\\cdot(2x + 3) = 3x\\cdot2x + 3x\\cdot3 + 5\\cdot2x + 5\\cdot3 = 6x^2 + 9x + 10x + 15 = 6x^2 + 19x + 15"

c) if 27x y^3 /3x^3 y^2 is "\\frac{27\\cdot y^3} {3x^3 y^2}" then "\\frac{27\\cdot y^3} {3x^3 y^2} = \/\\frac{y^3}{y^2} = y\/ = \\frac{27\\cdot y} {3x^3} = \/\\frac{27}{3} = 9\/ = \\frac{9\\cdot y} {x^3}"

if 27x y^3 /3x^3 y^2 is "\\frac{27x\\cdot y^3} {3x^3 y^2}" then "\\frac{27x\\cdot y^3} {3x^3 y^2} = \\frac{27x\\cdot y}{3x^3} = \\frac{9x\\cdot y}{x^3} = \\frac{9y}{x^2}"


6. a)


"10x - 6= 5x - 4 \\\\\n10x - 5x = -4 + 6 \\\\\n5x = 2 \\\\\nx = \\frac{2}{5} = 0.4"

b) if 4x (2x - 1) is "4x (2x - 1)" then:


"4x (2x - 1) = 2(3 - x) \\\\\n4x \\cdot 2x - 4x = 2 \\cdot 3 - 2\\cdot x \\\\\n8x^2 - 4x = 6 - 2x \\\\\n8x^2 - 4x + 2x - 6 = 0 \\\\\n8x^2 - 2x - 6 = 0 |:2 \\\\\n4x^2 - x - 3 = 0 \\\\\nD = (-1)^2 - 4\\cdot4\\cdot(-3) = 1 + 48 = 49 = 7^2 \\\\\nx_1 = \\frac{-(-1) + 7}{2\\cdot4} = \\frac{1 + 7}{8} = \\frac{8}{8} = 1 \\\\\nx_2 = \\frac{-(-1) - 7}{2\\cdot4} = \\frac{1 - 7}{8} = \\frac{-6}{8} = \\frac{-3}{4} = -0.75"

if 4x (2x - 1) is "4\\cdot (2x - 1)" then:


"4\\cdot (2x - 1) = 2(3 - x) \\\\\n4\\cdot2x - 4 \\cdot 1 = 2 \\cdot 3 - 2 \\cdot x \\\\\n8x - 4 = 6 - 2x \\\\\n8x + 2x = 6 + 4 \\\\\n10x = 10 \\\\\nx = 10 : 10 = 1"

7. Sum of triangle's angles is "180\\degree". Then


"\\angle K + \\angle L + \\angle M = 180\\degree \\\\\n12\\degree + 23\\degree + x = 180\\degree \\\\\n35\\degree + x = 180\\degree \\\\\nx = 180\\degree - 35\\degree = 145\\degree"

Answers:

  1. -
  2. 39
  3. 36
  4. -89
  5. a) "4x + 8" OR a) "4x^2 + 8x" -- depends on the condition

b) "6x^2 + 19x + 15"

c) "\\frac{9\\cdot y} {x^3}" OR c) "\\frac{9y}{x^2}" -- depends on the condition

6. a) x = 2/5 = 0,4

b) x1 = 1, x2 = -0,75 OR b) x = 1 -- depends on the condition

7. 145


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS