Find solution homogeneous system of linear equations if possible
3x1+x2+x3=0
2x1+2x2-4x3=0
2x1-3x2+5x3=0
Δ=∣31122−42−25∣\Delta= \begin{vmatrix} 3 & 1 &1\\ 2 & 2&-4\\2&-2&5 \end{vmatrix}Δ=∣∣32212−21−45∣∣ =3(10−12)−1(10+8)+1(−6−4)=−34≠0=3(10-12)-1(10+8)+1(-6-4)=-34\ne0=3(10−12)−1(10+8)+1(−6−4)=−34=0
Δ1=∣01102−40−35∣=0\Delta _1=\begin{vmatrix} 0 & 1&1 \\ 0 & 2&-4\\0&-3&5 \end{vmatrix}=0Δ1=∣∣00012−31−45∣∣=0
Δ2=∣30120−4205∣=0\Delta _2=\begin{vmatrix} 3 & 0 &1\\ 2 & 0&-4\\ 2&0&5 \end{vmatrix}=0Δ2=∣∣3220001−45∣∣=0
Δ3=∣3102202−30∣=0\Delta _3=\begin{vmatrix} 3 & 1&0\\ 2 & 2&0\\ 2&-3&0 \end{vmatrix}=0Δ3=∣∣32212−3000∣∣=0
The solution is
x1=Δ1Δ=0x_1=\frac{\Delta _1}{\Delta}=0x1=ΔΔ1=0
x2=Δ2Δ=0x_2=\frac{\Delta _2}{\Delta}=0x2=ΔΔ2=0
x3=Δ3Δ=0x_3=\frac{\Delta _3}{\Delta}=0x3=ΔΔ3=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments