Solve the equation 4x-3 = 2x2 + 5x -6. Please indicate what you graphed and what you got the calculator to do.
The graph of the quadratic function "y=2x^2+5x-6" is parabola.
"=2\\bigg(x^2+2(\\dfrac{5}{4})x+(\\dfrac{5}{4})^2\\bigg)-2(\\dfrac{5}{4})^2-6"
"=2\\big(x+\\dfrac{5}{4}\\big)^2-\\dfrac{73}{8}"
"Vertex:\\big(-\\dfrac{5}{4}, -\\dfrac{73}{8}\\big)"
"y" -intersection: "x=0, y=2(0)^2+5(0)-6=-6"
Point "(0, -6)"
"x" -intersection(s): "y=0, 0=2\\big(x+\\dfrac{5}{4}\\big)^2-\\dfrac{73}{8}"
"2\\big(x+\\dfrac{5}{4}\\big)^2=\\dfrac{73}{8}""\\big(x+\\dfrac{5}{4}\\big)^2=\\dfrac{73}{16}"
"x+\\dfrac{5}{4}=\\pm\\sqrt{\\dfrac{73}{16}}"
"x=-\\dfrac{5}{4}\\pm\\dfrac{\\sqrt{73}}{4}"
"x_1=-\\dfrac{5}{4}-\\dfrac{\\sqrt{73}}{4}"
"x_2=-\\dfrac{5}{4}+\\dfrac{\\sqrt{73}}{4}"
Point "\\big(\\dfrac{-5-\\sqrt{73}}{4}, 0\\big)," Point "\\big(\\dfrac{-5+\\sqrt{73}}{4}, 0\\big)."
"x=1: y=2(1)^2+5(1)-6=1"
Point "(1, 1)."
"x=-2: y=2(-2)^2+5(-2)-6=-8"
Point "(-1, -9)."
The graph of the linear function "y=4x-3" is a straight line.
"x=0: y=4(0)-3=-3" .
Point "(0, -3)"
"y=0: 0=4x-3=>x=\\dfrac{3}{4}"
Point "\\big(\\dfrac{3}{4}, 0\\big)"
Points of intersection "(1, 1), (-1.5, -9)"
Check
"1=1, True"
"-9=-9, True"
Solve the equation algebraically
"2x^2+5x-6-4x+3=0"
"2x^2+x-3=0"
"D=(1)^2-4(2)(-3)=25"
"x=\\dfrac{-1\\pm\\sqrt{25}}{2(2)}=\\dfrac{-1\\pm5}{4}"
"x_1=\\dfrac{-1-5}{4}=-1.5"
"y_1=4(-1.5)-3=-9"
"x_2=\\dfrac{-1+5}{4}=1"
"y_2=4(1)-3=1"
"x_1=-1.5, x_2=1"
Comments
Leave a comment