Answer to Question #261683 in Algebra for jall

Question #261683

Solve the equation 4x-3 = 2x2 + 5x -6. Please indicate what you graphed and what you got the calculator to do.


1
Expert's answer
2021-11-08T13:17:21-0500

The graph of the quadratic function "y=2x^2+5x-6" is parabola.


"y=2x^2+5x-6"

"=2\\bigg(x^2+2(\\dfrac{5}{4})x+(\\dfrac{5}{4})^2\\bigg)-2(\\dfrac{5}{4})^2-6"

"=2\\big(x+\\dfrac{5}{4}\\big)^2-\\dfrac{73}{8}"

"Vertex:\\big(-\\dfrac{5}{4}, -\\dfrac{73}{8}\\big)"

"y" -intersection: "x=0, y=2(0)^2+5(0)-6=-6"

Point "(0, -6)"


"x" -intersection(s): "y=0, 0=2\\big(x+\\dfrac{5}{4}\\big)^2-\\dfrac{73}{8}"

"2\\big(x+\\dfrac{5}{4}\\big)^2=\\dfrac{73}{8}"

"\\big(x+\\dfrac{5}{4}\\big)^2=\\dfrac{73}{16}"

"x+\\dfrac{5}{4}=\\pm\\sqrt{\\dfrac{73}{16}}"

"x=-\\dfrac{5}{4}\\pm\\dfrac{\\sqrt{73}}{4}"

"x_1=-\\dfrac{5}{4}-\\dfrac{\\sqrt{73}}{4}"

"x_2=-\\dfrac{5}{4}+\\dfrac{\\sqrt{73}}{4}"

Point "\\big(\\dfrac{-5-\\sqrt{73}}{4}, 0\\big)," Point "\\big(\\dfrac{-5+\\sqrt{73}}{4}, 0\\big)."


"x=1: y=2(1)^2+5(1)-6=1"

Point "(1, 1)."


"x=-2: y=2(-2)^2+5(-2)-6=-8"

Point "(-1, -9)."


The graph of the linear function "y=4x-3" is a straight line.

"x=0: y=4(0)-3=-3" .

Point "(0, -3)"


"y=0: 0=4x-3=>x=\\dfrac{3}{4}"

Point "\\big(\\dfrac{3}{4}, 0\\big)"

Points of intersection "(1, 1), (-1.5, -9)"

Check


"2(1)^2+5(1)-6=4(1)-3"

"1=1, True"


"2(-1.5)^2+5(-1.5)-6=4(-1.5)-3"

"-9=-9, True"



Solve the equation algebraically


"2x^2+5x-6=4x-3"

"2x^2+5x-6-4x+3=0"

"2x^2+x-3=0"


"D=(1)^2-4(2)(-3)=25"

"x=\\dfrac{-1\\pm\\sqrt{25}}{2(2)}=\\dfrac{-1\\pm5}{4}"

"x_1=\\dfrac{-1-5}{4}=-1.5"

"y_1=4(-1.5)-3=-9"

"x_2=\\dfrac{-1+5}{4}=1"

"y_2=4(1)-3=1"

"x_1=-1.5, x_2=1"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS