The graph of the quadratic function y = 2 x 2 + 5 x − 6 y=2x^2+5x-6 y = 2 x 2 + 5 x − 6 is parabola.
y = 2 x 2 + 5 x − 6 y=2x^2+5x-6 y = 2 x 2 + 5 x − 6
= 2 ( x 2 + 2 ( 5 4 ) x + ( 5 4 ) 2 ) − 2 ( 5 4 ) 2 − 6 =2\bigg(x^2+2(\dfrac{5}{4})x+(\dfrac{5}{4})^2\bigg)-2(\dfrac{5}{4})^2-6 = 2 ( x 2 + 2 ( 4 5 ) x + ( 4 5 ) 2 ) − 2 ( 4 5 ) 2 − 6
= 2 ( x + 5 4 ) 2 − 73 8 =2\big(x+\dfrac{5}{4}\big)^2-\dfrac{73}{8} = 2 ( x + 4 5 ) 2 − 8 73 V e r t e x : ( − 5 4 , − 73 8 ) Vertex:\big(-\dfrac{5}{4}, -\dfrac{73}{8}\big) V er t e x : ( − 4 5 , − 8 73 )
y y y -intersection: x = 0 , y = 2 ( 0 ) 2 + 5 ( 0 ) − 6 = − 6 x=0, y=2(0)^2+5(0)-6=-6 x = 0 , y = 2 ( 0 ) 2 + 5 ( 0 ) − 6 = − 6
Point ( 0 , − 6 ) (0, -6) ( 0 , − 6 )
x x x -intersection(s): y = 0 , 0 = 2 ( x + 5 4 ) 2 − 73 8 y=0, 0=2\big(x+\dfrac{5}{4}\big)^2-\dfrac{73}{8} y = 0 , 0 = 2 ( x + 4 5 ) 2 − 8 73
2 ( x + 5 4 ) 2 = 73 8 2\big(x+\dfrac{5}{4}\big)^2=\dfrac{73}{8} 2 ( x + 4 5 ) 2 = 8 73
( x + 5 4 ) 2 = 73 16 \big(x+\dfrac{5}{4}\big)^2=\dfrac{73}{16} ( x + 4 5 ) 2 = 16 73
x + 5 4 = ± 73 16 x+\dfrac{5}{4}=\pm\sqrt{\dfrac{73}{16}} x + 4 5 = ± 16 73
x = − 5 4 ± 73 4 x=-\dfrac{5}{4}\pm\dfrac{\sqrt{73}}{4} x = − 4 5 ± 4 73
x 1 = − 5 4 − 73 4 x_1=-\dfrac{5}{4}-\dfrac{\sqrt{73}}{4} x 1 = − 4 5 − 4 73
x 2 = − 5 4 + 73 4 x_2=-\dfrac{5}{4}+\dfrac{\sqrt{73}}{4} x 2 = − 4 5 + 4 73
Point ( − 5 − 73 4 , 0 ) , \big(\dfrac{-5-\sqrt{73}}{4}, 0\big), ( 4 − 5 − 73 , 0 ) , Point ( − 5 + 73 4 , 0 ) . \big(\dfrac{-5+\sqrt{73}}{4}, 0\big). ( 4 − 5 + 73 , 0 ) .
x = 1 : y = 2 ( 1 ) 2 + 5 ( 1 ) − 6 = 1 x=1: y=2(1)^2+5(1)-6=1 x = 1 : y = 2 ( 1 ) 2 + 5 ( 1 ) − 6 = 1
Point ( 1 , 1 ) . (1, 1). ( 1 , 1 ) .
x = − 2 : y = 2 ( − 2 ) 2 + 5 ( − 2 ) − 6 = − 8 x=-2: y=2(-2)^2+5(-2)-6=-8 x = − 2 : y = 2 ( − 2 ) 2 + 5 ( − 2 ) − 6 = − 8
Point ( − 1 , − 9 ) . (-1, -9). ( − 1 , − 9 ) .
The graph of the linear function y = 4 x − 3 y=4x-3 y = 4 x − 3 is a straight line.
x = 0 : y = 4 ( 0 ) − 3 = − 3 x=0: y=4(0)-3=-3 x = 0 : y = 4 ( 0 ) − 3 = − 3 .
Point ( 0 , − 3 ) (0, -3) ( 0 , − 3 )
y = 0 : 0 = 4 x − 3 = > x = 3 4 y=0: 0=4x-3=>x=\dfrac{3}{4} y = 0 : 0 = 4 x − 3 => x = 4 3
Point ( 3 4 , 0 ) \big(\dfrac{3}{4}, 0\big) ( 4 3 , 0 )
Points of intersection ( 1 , 1 ) , ( − 1.5 , − 9 ) (1, 1), (-1.5, -9) ( 1 , 1 ) , ( − 1.5 , − 9 )
Check
2 ( 1 ) 2 + 5 ( 1 ) − 6 = 4 ( 1 ) − 3 2(1)^2+5(1)-6=4(1)-3 2 ( 1 ) 2 + 5 ( 1 ) − 6 = 4 ( 1 ) − 3
1 = 1 , T r u e 1=1, True 1 = 1 , T r u e
2 ( − 1.5 ) 2 + 5 ( − 1.5 ) − 6 = 4 ( − 1.5 ) − 3 2(-1.5)^2+5(-1.5)-6=4(-1.5)-3 2 ( − 1.5 ) 2 + 5 ( − 1.5 ) − 6 = 4 ( − 1.5 ) − 3
− 9 = − 9 , T r u e -9=-9, True − 9 = − 9 , T r u e
Solve the equation algebraically
2 x 2 + 5 x − 6 = 4 x − 3 2x^2+5x-6=4x-3 2 x 2 + 5 x − 6 = 4 x − 3
2 x 2 + 5 x − 6 − 4 x + 3 = 0 2x^2+5x-6-4x+3=0 2 x 2 + 5 x − 6 − 4 x + 3 = 0
2 x 2 + x − 3 = 0 2x^2+x-3=0 2 x 2 + x − 3 = 0
D = ( 1 ) 2 − 4 ( 2 ) ( − 3 ) = 25 D=(1)^2-4(2)(-3)=25 D = ( 1 ) 2 − 4 ( 2 ) ( − 3 ) = 25
x = − 1 ± 25 2 ( 2 ) = − 1 ± 5 4 x=\dfrac{-1\pm\sqrt{25}}{2(2)}=\dfrac{-1\pm5}{4} x = 2 ( 2 ) − 1 ± 25 = 4 − 1 ± 5
x 1 = − 1 − 5 4 = − 1.5 x_1=\dfrac{-1-5}{4}=-1.5 x 1 = 4 − 1 − 5 = − 1.5
y 1 = 4 ( − 1.5 ) − 3 = − 9 y_1=4(-1.5)-3=-9 y 1 = 4 ( − 1.5 ) − 3 = − 9
x 2 = − 1 + 5 4 = 1 x_2=\dfrac{-1+5}{4}=1 x 2 = 4 − 1 + 5 = 1
y 2 = 4 ( 1 ) − 3 = 1 y_2=4(1)-3=1 y 2 = 4 ( 1 ) − 3 = 1
x 1 = − 1.5 , x 2 = 1 x_1=-1.5, x_2=1 x 1 = − 1.5 , x 2 = 1
Comments