It is given that
"z+2i=iz+\\lambda,\\quad\\quad" "\\frac{w}{z}=2+2i,\\quad\\quad" "\\mathrm{Im}w=8,"
where z and w are complex numbers, and λ is a real constant. Which of the following is the value of \lambdaλ?
λ=4
λ=8
λ=3
λ=−3
λ=−4
"z+2i=iz+\\lambda\\\\\\frac{w}{z}=2+2i\\\\z(1-i)=\\lambda-2i\\\\z=\\frac{\\lambda-2i}{1-i}"
Rationalise the denominator
"z=\\frac{(\\lambda-2i)(1+i)}{(1)^2-(-1)^2}=\\frac{\\lambda+\\lambda i-2i-2i^2}{2}"
"z=\\frac{\\lambda+2}{2}+\\frac{i(\\lambda-2)}{2}"
"z=\\frac{\\lambda+2}{2}+\\frac{i(\\lambda-2)}{2}"
Given, imaginary part of w=8)
"w=(2+2i)z"
"=(2+2i)\\frac{(\\lambda+2)+i(\\lambda-2)}{2}"
"=(1+i)[(\\lambda+2)+i(\\lambda-2)]"
"=\\lambda+2+i(\\lambda-2)+i(\\lambda+2)-1(\\lambda-2)\\\\=\\lambda+2-\\lambda+2+i(\\lambda-2+\\lambda+2)\\\\=4+i(2\\lambda)"
Since, ln(w)=8
"2\\lambda=8\\\\\\lambda=4"
Comments
Leave a comment