Answer to Question #247921 in Algebra for jon jones

Question #247921

Solve the equation 1 + 2log (x+1) = log (2x+1) = log (2x+1) +log (5x+8)


1
Expert's answer
2021-10-07T15:14:14-0400
1+2log(x+1)=log(2x+1)+log(5x+8)1 + 2\log (x+1) = \log (2x+1) +\log (5x+8)

x+1>02x+1>05x+8>0=>x>12\begin{matrix} x+1>0 \\ 2x+1>0 \\ 5x+8>0 \end{matrix}=>x>-\dfrac{1}{2}

Then


log(2x+1)(5x+8)(x+1)2=1\log\dfrac{(2x+1)(5x+8)}{(x+1)^2}=1

(2x+1)(5x+8)(x+1)2=10\dfrac{(2x+1)(5x+8)}{(x+1)^2}=10

10x2+16x+5x+8=10x2+20x+1010x^2+16x+5x+8=10x^2+20x+10

x=2x=2

2>122>-\dfrac{1}{2}

Answer: x=2.x=2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment