(i) If 4π π₯ β 3π βπ₯ β‘ ππ ππβ π₯ + ππππ β π₯, determine the values of π and π. (ii) Solve the equation πππ ππβ π¦ = β0.4458, correct to 4 significant figures
We have
"sinh(x)=\\frac{e^x-e^{-x}}{2}\\\\\ncosh(x)=\\frac{e^x-+e^{-x}}{2}\\\\\nP\\cdot sinh(x)+Q\\cdot xosh(x)=P\\cdot \\left( \\frac{e^x-e^{-x}}{2} \\right)+\nQ\\cdot \\left( \\frac{e^+-e^{-x}}{2} \\right)=\\\\\ne^x\\cdot \\left( \\frac{P+Q}{2} \\right)+\ne^{-x}\\cdot \\left( \\frac{-P+Q}{2} \\right)=4\\cdot e^x-3\\cdot e^{-x}"
Therefore
"\\begin{cases}\n P+Q=8 \\\\\n -P+Q=-6\n\\end{cases}"
Adding equatioms we have 2Q=2=>Q=1.
Inserting this value to the first equation have P=8-1=7;
Answer: P=7,Q=1
2)cosech(x)=1/sinh(x)=
"\\frac{2}{e^x-e^{-x}}=-0.4458;\\\\\ne^x-e^{-x}=\\frac{2}{-0.4458}=-4.486\\\\"
Let be "e^x=t"
Then we have an equation
"t-\\frac{1}{t}=-4.486\\\\\nt^2+4.486\\cdot t-1=0;\\\\\nt=\\frac{-4.486+\\sqrt{4.486^2+4}}{2}=0.2128"
"e^x=0.2128"
x=ln(0.2128)=-1.5474
Answer: x=-1.5474 (or y=-1.5474)
Comments
Leave a comment