We have
s i n h ( x ) = e x − e − x 2 c o s h ( x ) = e x − + e − x 2 P ⋅ s i n h ( x ) + Q ⋅ x o s h ( x ) = P ⋅ ( e x − e − x 2 ) + Q ⋅ ( e + − e − x 2 ) = e x ⋅ ( P + Q 2 ) + e − x ⋅ ( − P + Q 2 ) = 4 ⋅ e x − 3 ⋅ e − x sinh(x)=\frac{e^x-e^{-x}}{2}\\
cosh(x)=\frac{e^x-+e^{-x}}{2}\\
P\cdot sinh(x)+Q\cdot xosh(x)=P\cdot \left( \frac{e^x-e^{-x}}{2} \right)+
Q\cdot \left( \frac{e^+-e^{-x}}{2} \right)=\\
e^x\cdot \left( \frac{P+Q}{2} \right)+
e^{-x}\cdot \left( \frac{-P+Q}{2} \right)=4\cdot e^x-3\cdot e^{-x} s inh ( x ) = 2 e x − e − x cos h ( x ) = 2 e x −+ e − x P ⋅ s inh ( x ) + Q ⋅ x os h ( x ) = P ⋅ ( 2 e x − e − x ) + Q ⋅ ( 2 e + − e − x ) = e x ⋅ ( 2 P + Q ) + e − x ⋅ ( 2 − P + Q ) = 4 ⋅ e x − 3 ⋅ e − x
Therefore
{ P + Q = 8 − P + Q = − 6 \begin{cases}
P+Q=8 \\
-P+Q=-6
\end{cases} { P + Q = 8 − P + Q = − 6
Adding equatioms we have 2Q=2=>Q=1.
Inserting this value to the first equation have P=8-1=7;
Answer: P=7,Q=1
2)cosech(x)=1/sinh(x)=
2 e x − e − x = − 0.4458 ; e x − e − x = 2 − 0.4458 = − 4.486 \frac{2}{e^x-e^{-x}}=-0.4458;\\
e^x-e^{-x}=\frac{2}{-0.4458}=-4.486\\ e x − e − x 2 = − 0.4458 ; e x − e − x = − 0.4458 2 = − 4.486
Let be e x = t e^x=t e x = t
Then we have an equation
t − 1 t = − 4.486 t 2 + 4.486 ⋅ t − 1 = 0 ; t = − 4.486 + 4.48 6 2 + 4 2 = 0.2128 t-\frac{1}{t}=-4.486\\
t^2+4.486\cdot t-1=0;\\
t=\frac{-4.486+\sqrt{4.486^2+4}}{2}=0.2128 t − t 1 = − 4.486 t 2 + 4.486 ⋅ t − 1 = 0 ; t = 2 − 4.486 + 4.48 6 2 + 4 = 0.2128
e x = 0.2128 e^x=0.2128 e x = 0.2128
x=ln(0.2128)=-1.5474
Answer: x=-1.5474 (or y=-1.5474)
Comments