Question #241644

Solve each of the following equations:

(i) e2x · (e2x-1)3 = 9

(ii) 2 ln x - ln(3 - 5x) = ln 2


1
Expert's answer
2021-09-26T18:04:27-0400

(i)


e2x(e2x1)3=9e^{2x}\cdot(e^{2x}-1)^3=9

Use substitution e2x=t,t>0.e^{2x}=t, t>0. Then


t(t1)3=9t(t-1)^3=9

t43t3+3t2t9=0t^4-3t^3+3t^2-t-9=0



t>0=>t2.527t>0=>t\approx2.527


e2x2.527e^{2x}\approx2.527

x0.5ln2.527x\approx0.5\ln2.527

x0.464x\approx0.464



(ii)


2lnxln(35x)=ln22\ln x-\ln (3-5x)=\ln 2

x>0,35x>0x>0, 3-5x>0

Then 0<x<350<x<\dfrac{3}{5}


lnx2=ln(2(35x))\ln x^2=\ln(2(3-5x))

x2=610xx^2=6-10x

x2+10x6=0x^2+10x-6=0

D=(10)24(1)(6)=124D=(10)^2-4(1)(-6)=124

x=10±1242(1)=5±31x=\dfrac{-10\pm\sqrt{124}}{2(1)}=-5\pm\sqrt{31}

5+31<35-5+\sqrt{31}<\dfrac{3}{5}

31<285\sqrt{31}<\dfrac{28}{5}

31<7842531<\dfrac{784}{25}

31<31.36,True31<31.36, True

Answer: x=315.x=\sqrt{31}-5.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS