( m + 1 ) x 2 + 4 ( m − 1 ) x + 4 − m = 0 (m+1)x^2+4(m-1)x+4-m=0 ( m + 1 ) x 2 + 4 ( m − 1 ) x + 4 − m = 0
a) The equation has the double root if D = 4 2 ( m − 1 ) 2 − 4 ( m + 1 ) ( 4 − m ) = 20 m 2 − 44 m = 20 m ( m − 2.2 ) = 0 D=4^2(m-1)^2-4(m+1)(4-m)=20m^2-44m=20m(m-2.2)=0 D = 4 2 ( m − 1 ) 2 − 4 ( m + 1 ) ( 4 − m ) = 20 m 2 − 44 m = 20 m ( m − 2.2 ) = 0 .
If m = 0 m=0 m = 0 , then we have x 2 − 4 x + 4 = ( x − 2 ) 2 = 0 x^2-4x+4=(x-2)^2=0 x 2 − 4 x + 4 = ( x − 2 ) 2 = 0 . The root is x = 2 x=2 x = 2 .
If m = 2.2 m=2.2 m = 2.2 , then we have 3.2 x 2 + 4.8 x − 1.8 = 3.2 ( x − 0.75 ) 2 = 0 3.2x^2+4.8x-1.8=3.2(x-0.75)^2=0 3.2 x 2 + 4.8 x − 1.8 = 3.2 ( x − 0.75 ) 2 = 0 . The root is x = 0.75 x=0.75 x = 0.75
b) If the equation is of the first degree, then m + 1 = 0 m+1=0 m + 1 = 0 and m = − 1 m=-1 m = − 1 .
We have the following equation: − 8 x + 5 = 0 -8x+5=0 − 8 x + 5 = 0
The root is x = 5 / 8 = 0.625 x=5/8=0.625 x = 5/8 = 0.625
c) If 0 is the root of the equation, then 4 − m = 0 4-m=0 4 − m = 0 and m = 4 m=4 m = 4 .
We have the following equation: 5 x 2 + 12 x = 0 5x^2+12x=0 5 x 2 + 12 x = 0
5 x 2 + 12 x = 5 x ( x + 2.4 ) = 0 5x^2+12x=5x(x+2.4)=0 5 x 2 + 12 x = 5 x ( x + 2.4 ) = 0
The other root is x = − 2.4 x=-2.4 x = − 2.4
d) The equation has two roots of different signs, if D > 0 D>0 D > 0 (existence) and x 1 x 2 < 0 x_1x_2<0 x 1 x 2 < 0 (different signs).
{ D = 22 m ( m − 2.2 ) > 0 x 1 x 2 = c a = 4 − m m + 1 < 0 \begin{cases}
D=22m(m-2.2)>0
\\
x_1x_2=\frac{c}{a}=\frac{4-m}{m+1}<0
\end{cases} { D = 22 m ( m − 2.2 ) > 0 x 1 x 2 = a c = m + 1 4 − m < 0
{ m ∈ ( − ∞ , 0 ) ∪ ( 2.2 , + ∞ ) m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ ) \begin{cases}
m\in (-\infty , \ 0)\cup (2.2,\ +\infty)
\\
m\in (-\infty,\ -1)\cup (4,\ +\infty)
\end{cases} { m ∈ ( − ∞ , 0 ) ∪ ( 2.2 , + ∞ ) m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ )
m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ ) m\in (-\infty,\ -1)\cup (4,\ +\infty) m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ )
e) The equation has two (distinct) postings roots, if D > 0 D>0 D > 0 (existence) and x 1 x 2 > 0 x_1x_2>0 x 1 x 2 > 0 , x 1 + x 2 > 0 x_1+x_2>0 x 1 + x 2 > 0 (positive).
{ D = 22 m ( m − 2.2 ) > 0 x 1 x 2 = c a = 4 − m m + 1 > 0 x 1 + x 2 = − b a = − 4 ( m − 1 ) m + 1 > 0 \begin{cases}
D=22m(m-2.2)>0
\\
x_1x_2=\frac{c}{a}=\frac{4-m}{m+1}>0
\\
x_1+x_2=-\frac{b}{a}=-\frac{4(m-1)}{m+1}>0
\end{cases} ⎩ ⎨ ⎧ D = 22 m ( m − 2.2 ) > 0 x 1 x 2 = a c = m + 1 4 − m > 0 x 1 + x 2 = − a b = − m + 1 4 ( m − 1 ) > 0
{ m ∈ ( − ∞ , 0 ) ∪ ( 2.2 , + ∞ ) m ∈ ( − 1 , 4 ) m ∈ ( − 1 , 1 ) \begin{cases}
m\in (-\infty , \ 0)\cup (2.2,\ +\infty)
\\
m\in (-1,\ 4)\\
m\in (-1,\ 1)
\end{cases} ⎩ ⎨ ⎧ m ∈ ( − ∞ , 0 ) ∪ ( 2.2 , + ∞ ) m ∈ ( − 1 , 4 ) m ∈ ( − 1 , 1 )
m ∈ ( − 1 , 0 ) m\in(-1,0) m ∈ ( − 1 , 0 )
Answers:
a) m = 0 , x = 2 m=0,\ x=2 m = 0 , x = 2 and m = 2.2 , x = 0.75 m=2.2, \ x=0.75 m = 2.2 , x = 0.75
b) m = − 1 , x = 0.625 m=-1,\ x=0.625 m = − 1 , x = 0.625
c) m = 4 , x = − 2.4 m=4,\ x=-2.4 m = 4 , x = − 2.4
d) m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ ) m\in (-\infty,\ -1)\cup (4,\ +\infty) m ∈ ( − ∞ , − 1 ) ∪ ( 4 , + ∞ )
e) m ∈ ( − 1 , 0 ) m\in(-1,0) m ∈ ( − 1 , 0 )
Comments