Question #236247

Given the equation in X, (m + 1)X^2+ 4(m – 1)X + 4 – m = 0, determine m in each of

the following cases:

a) The equation has a double root, what is the root? (3marks)

b) the equation is of the first degree. What is the root? (3marks)

c) 0 is a root of the equation. What is the other root? (3marks)

d) the equation has two roots of different signs (3marks)

e) the equation has two positive roots. (3marks)


1
Expert's answer
2021-09-20T15:47:59-0400

(m+1)x2+4(m1)x+4m=0(m+1)x^2+4(m-1)x+4-m=0


a) The equation has the double root if D=42(m1)24(m+1)(4m)=20m244m=20m(m2.2)=0D=4^2(m-1)^2-4(m+1)(4-m)=20m^2-44m=20m(m-2.2)=0 .

If m=0m=0 , then we have x24x+4=(x2)2=0x^2-4x+4=(x-2)^2=0 . The root is x=2x=2 .

If m=2.2m=2.2 , then we have 3.2x2+4.8x1.8=3.2(x0.75)2=03.2x^2+4.8x-1.8=3.2(x-0.75)^2=0 . The root is x=0.75x=0.75

b) If the equation is of the first degree, then m+1=0m+1=0 and m=1m=-1 .

We have the following equation: 8x+5=0-8x+5=0

The root is x=5/8=0.625x=5/8=0.625


c) If 0 is the root of the equation, then 4m=04-m=0 and m=4m=4 .

We have the following equation: 5x2+12x=05x^2+12x=0

5x2+12x=5x(x+2.4)=05x^2+12x=5x(x+2.4)=0

The other root is x=2.4x=-2.4


d) The equation has two roots of different signs, if D>0D>0 (existence) and x1x2<0x_1x_2<0 (different signs).

{D=22m(m2.2)>0x1x2=ca=4mm+1<0\begin{cases} D=22m(m-2.2)>0 \\ x_1x_2=\frac{c}{a}=\frac{4-m}{m+1}<0 \end{cases}


{m(, 0)(2.2, +)m(, 1)(4, +)\begin{cases} m\in (-\infty , \ 0)\cup (2.2,\ +\infty) \\ m\in (-\infty,\ -1)\cup (4,\ +\infty) \end{cases}


m(, 1)(4, +)m\in (-\infty,\ -1)\cup (4,\ +\infty)


e) The equation has two (distinct) postings roots, if D>0D>0 (existence) and x1x2>0x_1x_2>0 , x1+x2>0x_1+x_2>0 (positive).

{D=22m(m2.2)>0x1x2=ca=4mm+1>0x1+x2=ba=4(m1)m+1>0\begin{cases} D=22m(m-2.2)>0 \\ x_1x_2=\frac{c}{a}=\frac{4-m}{m+1}>0 \\ x_1+x_2=-\frac{b}{a}=-\frac{4(m-1)}{m+1}>0 \end{cases}


{m(, 0)(2.2, +)m(1, 4)m(1, 1)\begin{cases} m\in (-\infty , \ 0)\cup (2.2,\ +\infty) \\ m\in (-1,\ 4)\\ m\in (-1,\ 1) \end{cases}


m(1,0)m\in(-1,0)


Answers:

a) m=0, x=2m=0,\ x=2 and m=2.2, x=0.75m=2.2, \ x=0.75

b) m=1, x=0.625m=-1,\ x=0.625

c) m=4, x=2.4m=4,\ x=-2.4

d) m(, 1)(4, +)m\in (-\infty,\ -1)\cup (4,\ +\infty)

e) m(1,0)m\in(-1,0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS