a) A subset S S S of a vector space V V V is called a basis if
1. S S S is linearly independent, and
2. S S S is a spanning set
Any three linearly independent vectors form a basis of R 3 . \R^3. R 3 .
Let us check that whether S S S is a linearly independent set.
Consider the linear combination
x 1 ( 1 0 0 ) + x 2 ( 0 1 0 ) + x 3 ( 0 0 0 ) = ( 0 0 0 ) x_1\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}+x_2\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}+x_3\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}=\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} x 1 ⎝ ⎛ 1 0 0 ⎠ ⎞ + x 2 ⎝ ⎛ 0 1 0 ⎠ ⎞ + x 3 ⎝ ⎛ 0 0 0 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞ This is equivalent to the matrix equation
( 1 0 0 0 1 0 0 0 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}=\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 0 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞ A = ( 1 0 0 0 0 1 0 0 0 0 0 0 ) A=\begin{pmatrix}
1 & 0 & 0 & & 0 \\
0 & 1 & 0 & & 0 \\
0 & 0 & 0 & & 0 \\
\end{pmatrix} A = ⎝ ⎛ 1 0 0 0 1 0 0 0 0 0 0 0 ⎠ ⎞ Thus, the general solution is x 1 = 0 , x 2 = 0 , x 3 = t , t ∈ R x_1=0, x_2=0, x_3=t, t\in \R x 1 = 0 , x 2 = 0 , x 3 = t , t ∈ R is a free variable.
Hence, in particular, there is a nonzero solution.
So S S S is linearly dependent, and hence S S S cannot be a basis for R 3 . \R^3. R 3 .
b)
D = [ 0 3 9 0 − 2 − 1 1 − 1 0 − 1 − 3 1 ] D= \begin{bmatrix}
0 & 3 & 9 & 0 \\
-2 & -1 & 1 & -1 \\
0 & -1 & -3 & 1 \\
\end{bmatrix} D = ⎣ ⎡ 0 − 2 0 3 − 1 − 1 9 1 − 3 0 − 1 1 ⎦ ⎤ Swap R 1 R_1 R 1 and R 2 R_2 R 2
[ − 2 − 1 1 − 1 0 3 9 0 0 − 1 − 3 1 ] \begin{bmatrix}
-2 & -1 & 1 & -1 \\
0 & 3 & 9 & 0 \\
0 & -1 & -3 & 1 \\
\end{bmatrix} ⎣ ⎡ − 2 0 0 − 1 3 − 1 1 9 − 3 − 1 0 1 ⎦ ⎤
R 3 = R 3 + R 2 / 3 R_3=R_3+R_2/3 R 3 = R 3 + R 2 /3
[ − 2 − 1 1 − 1 0 3 9 0 0 0 0 1 ] \begin{bmatrix}
-2 & -1 & 1 & -1 \\
0 & 3 & 9 & 0 \\
0 & 0 & 0& 1 \\
\end{bmatrix} ⎣ ⎡ − 2 0 0 − 1 3 0 1 9 0 − 1 0 1 ⎦ ⎤ The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.
r a n k ( D ) = 3 rank(D)=3 r ank ( D ) = 3
Comments