Find the eigenvalues and corresponding eigenvectors of matrix G given below.
G= [2 -3]
[4 -5]
"G= \\begin{bmatrix}\n2 & -3 \\\\\n4 & -5\n\\end{bmatrix}"
Finding the eigenvalues:
"\\det \\left(\\begin{pmatrix}2&-3\\\\ 4&-5\\end{pmatrix}-\u03bb\\begin{pmatrix}1&0\\\\ 0&1\\end{pmatrix}\\right)"
"=\\begin{pmatrix}2-\u03bb&\\left(-3\\right)-0\\\\ 4-0&\\left(-5\\right)-\u03bb\\end{pmatrix}"
"\\left(2-\u03bb\\right)\\left(-5-\u03bb\\right)-\\left(-3\\right)\\cdot \\:4"
"\u03bb^2+3\u03bb+2=0"
Solving this "\u03bb^2+3\u03bb+2=0"
"\u03bb=-1,\\:\u03bb=-2"
Therefore eigenvalues are: -1 and -2
Calculating Eigenvectors for ": \u03bb=-1"
"= \\begin{pmatrix}2&-3\\\\ 4&-5\\end{pmatrix}-\\left(-1\\right)\\begin{pmatrix}1&0\\\\ 0&1\\end{pmatrix}"
"=\\begin{pmatrix}2&-3\\\\ 4&-5\\end{pmatrix}-\\begin{pmatrix}-1&0\\\\ 0&-1\\end{pmatrix}"
"=\\begin{pmatrix}3&-3\\\\ 4&-4\\end{pmatrix}"
To solve "\\begin{pmatrix}3&-3\\\\ 4&-4\\end{pmatrix} \\begin{pmatrix} x\\\\y\\end{pmatrix} = \\begin{pmatrix} 0\\\\0\\end{pmatrix}," reduce the matrix
"= \\begin{pmatrix} 1\\\\1 \\end{pmatrix}" as the eigenvectors for "\u03bb=-1"
Calculating Eigenvectors for ": \u03bb=-2"
"= \\begin{pmatrix}2&-3\\\\ 4&-5\\end{pmatrix}-\\left(-2\\right)\\begin{pmatrix}1&0\\\\ 0&1\\end{pmatrix}"
"=\\begin{pmatrix}4&-3\\\\ 4&-3\\end{pmatrix}"
To solve "\\begin{pmatrix}4&-3\\\\ 4&-3\\end{pmatrix} \\begin{pmatrix} x\\\\y\\end{pmatrix} = \\begin{pmatrix} 0\\\\0\\end{pmatrix}," reduce the matrix
"= \\begin{pmatrix} 3\\\\4 \\end{pmatrix}" as the eigenvectors for "\u03bb=-2"
The Eigenvectors for "\\begin{pmatrix}2&-3 \\\\ 4 & -5\\end{pmatrix}" becomes "=\\begin{pmatrix}1\\\\ 1\\end{pmatrix},\\:\\begin{pmatrix}3\\\\ 4\\end{pmatrix}"
Comments
Leave a comment