The sequences are given as ,
an=2,5,9,14,20,27 .....bn=1,3,12,60,360,2530 ........
First sequence is
an=2,5,9,14,20,27 .....
So ,
a1=2 , a2=5 , a3=9 , a4=14
Now ,
a2−a1=3
a3−a2=4
a4−a3=5
·········
an−an-1=n+1
This is cumulative sequence. Therefore by adding we get ,
an−a1=3+4+5+·······+(n+1)
⇒an−2=3+4+5+·······+(n+1)
⇒an=2+3+4+5+·······+(n+1)
⇒an="\\frac{n}{2}[2+(n+1)]"
⇒an="\\frac{n(n+3)}{2}"
put n=7 ,
a7="\\frac{7(7+3)}{2}=\\frac{7\u00d710}{2}=35"
Thus , the equation is an="\\frac{n(n+3)}{2}"
and a7=35
And second sequence is
bn=1,3,12,60,360,2530 ........
So ,
b1=1 , b2=3 , b3=12 , b4=60
Now ,
"\\frac{b_2}{b_1}" =3
"\\frac{b_3}{b_2}=4"
"\\frac{b_4}{b_3}=5"
······
"\\frac{b_n}{b_{(n-1)}}=n+1"
This is multiplicative sequence , Therefore by multiply we get ,
"\\frac{b_2}{b_1}\u00d7\\frac{b_3}{b_2}\u00d7\\frac{b_4}{b_3}\u00d7...........\\frac{b_n}{b_{n-1}}=3\u00d74\u00d75.......\u00d7(n+1)"
"\\frac{b_n}{b_1}=3\u00d74\u00d75\u00d7.....\u00d7(n+1)"
"\\implies\\frac{b_n}{1}=3\u00d74\u00d75\u00d7.........\u00d7(n+1)"
"\\implies b_n=3\u00d74\u00d75\u00d7.........\u00d7(n+1)"
bn="\\frac{1\u00d72\u00d73\u00d74\u00d75\u00d7......\u00d7(n+1)}{2}"
"\\implies b_n=\\frac{(n+1)!}{2}"
put n=7,
b7="\\frac{(7+1)!}{2}=\\frac{8!}{2}=\\frac{40320}{2}=20160"
Thus , the equation is bn="\\frac{(n+1)!}{2}" and b7=20160
Comments
Leave a comment