1.
Given that
"F(x,y)=\\int_y ^xcos(e^t)dt"
Differentiating partially with respect to x we get
"\\frac{\\delta F}{\\delta x}=\\frac{\\delta}{\\delta x}\\int_y^xcos(e^t)dt"
"=cos(e^x).\\frac{\\delta}{\\delta x}(x)+cos(e^t).\\frac{\\delta}{\\delta x}(y)................"
By leibritz theorem
"\\frac{\\delta F}{\\delta x}=cos(e^x)"
now, again differenting partially with respect to y we get
"\\frac{\\delta F}{\\delta y}=\\frac{\\delta}{\\delta y}\\int_y^xcos(e^t)dt"
"=cos(e^x).\\frac{\\delta}{\\delta y}(x)-cos(e^y).\\frac{\\delta}{\\delta y}(y)"
by Leibritz rule
"\\frac{\\delta F}{\\delta y}=-cos(e^y)"
2.
Given "f(x,y,z)=xy^2e^{-xz}"
The first order derivative
"f(x,y,z)=xy^2e^-{xz}\\\\F_x=\\frac{\\delta}{\\delta x}(xy^2e^{-xz})\\\\y^2\\frac{\\delta}{\\delta x}(xe^{-xz})\\\\y^2[x\\frac{\\delta}{\\delta x}e^{-xz}+e^{-xz}\\frac{\\delta}{\\delta x} x]\\\\F_x=y^2[xe^{-xz}(-z)+e^{-xz}]"
"F_x(x,y,z)=e^{-xz}y^2(1-xz)"
"F_y=\\frac{\\delta}{\\delta y}(xy^2e^{-xz})=F_y=2xye^{-xz}\\space and \\space F_z=\\frac{\\delta}{\\delta z}(xy^2e^{-xz})"
"F_z=xy^2\\frac{\\delta}{\\delta z}(e^{-xz})\\\\xy^2e^{-xz}\\frac{\\delta}{\\delta z}(-xz)\\\\F_z=-x^2y^2e^{-xz}"
Comments
Leave a comment