Question #220719
Determine the first order partial derivative of the following:
1. F(x, y) = cos(e^t) dt
2.f(x,y,z)=xy^2e^-xz
1
Expert's answer
2021-08-03T15:17:12-0400

1.

Given that

F(x,y)=yxcos(et)dtF(x,y)=\int_y ^xcos(e^t)dt

Differentiating partially with respect to x we get

δFδx=δδxyxcos(et)dt\frac{\delta F}{\delta x}=\frac{\delta}{\delta x}\int_y^xcos(e^t)dt


=cos(ex).δδx(x)+cos(et).δδx(y)................=cos(e^x).\frac{\delta}{\delta x}(x)+cos(e^t).\frac{\delta}{\delta x}(y)................


By leibritz theorem

δFδx=cos(ex)\frac{\delta F}{\delta x}=cos(e^x)


now, again differenting partially with respect to y we get

δFδy=δδyyxcos(et)dt\frac{\delta F}{\delta y}=\frac{\delta}{\delta y}\int_y^xcos(e^t)dt


=cos(ex).δδy(x)cos(ey).δδy(y)=cos(e^x).\frac{\delta}{\delta y}(x)-cos(e^y).\frac{\delta}{\delta y}(y)


by Leibritz rule

δFδy=cos(ey)\frac{\delta F}{\delta y}=-cos(e^y)


2.

Given f(x,y,z)=xy2exzf(x,y,z)=xy^2e^{-xz}

The first order derivative

f(x,y,z)=xy2exzFx=δδx(xy2exz)y2δδx(xexz)y2[xδδxexz+exzδδxx]Fx=y2[xexz(z)+exz]f(x,y,z)=xy^2e^-{xz}\\F_x=\frac{\delta}{\delta x}(xy^2e^{-xz})\\y^2\frac{\delta}{\delta x}(xe^{-xz})\\y^2[x\frac{\delta}{\delta x}e^{-xz}+e^{-xz}\frac{\delta}{\delta x} x]\\F_x=y^2[xe^{-xz}(-z)+e^{-xz}]

Fx(x,y,z)=exzy2(1xz)F_x(x,y,z)=e^{-xz}y^2(1-xz)

Fy=δδy(xy2exz)=Fy=2xyexz and Fz=δδz(xy2exz)F_y=\frac{\delta}{\delta y}(xy^2e^{-xz})=F_y=2xye^{-xz}\space and \space F_z=\frac{\delta}{\delta z}(xy^2e^{-xz})

Fz=xy2δδz(exz)xy2exzδδz(xz)Fz=x2y2exzF_z=xy^2\frac{\delta}{\delta z}(e^{-xz})\\xy^2e^{-xz}\frac{\delta}{\delta z}(-xz)\\F_z=-x^2y^2e^{-xz}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS