1.
Given that
F(x,y)=∫yxcos(et)dt
Differentiating partially with respect to x we get
δxδF=δxδ∫yxcos(et)dt
=cos(ex).δxδ(x)+cos(et).δxδ(y)................
By leibritz theorem
δxδF=cos(ex)
now, again differenting partially with respect to y we get
δyδF=δyδ∫yxcos(et)dt
=cos(ex).δyδ(x)−cos(ey).δyδ(y)
by Leibritz rule
δyδF=−cos(ey)
2.
Given f(x,y,z)=xy2e−xz
The first order derivative
f(x,y,z)=xy2e−xzFx=δxδ(xy2e−xz)y2δxδ(xe−xz)y2[xδxδe−xz+e−xzδxδx]Fx=y2[xe−xz(−z)+e−xz]
Fx(x,y,z)=e−xzy2(1−xz)
Fy=δyδ(xy2e−xz)=Fy=2xye−xz and Fz=δzδ(xy2e−xz)
Fz=xy2δzδ(e−xz)xy2e−xzδzδ(−xz)Fz=−x2y2e−xz
Comments