Question #210396

4. Find the ratio e : f, if 5e2 – 13ef – 6f2 = 0 where e and f ≠ 0.


1
Expert's answer
2021-06-25T07:10:48-0400
5e213ef6f2=05e^2-13ef-6f^2=0

Divide both sides by f20f^2\not=0


5e2f213eff26f2f2=0\dfrac{5e^2}{f^2}-\dfrac{13ef}{f^2}-\dfrac{6f^2}{f^2}=0

5(ef)213(ef)6=05(\dfrac{e}{f})^2-13(\dfrac{e}{f})-6=0

Solve the quadratic equation for ef\dfrac{e}{f}


D=(13)24(5)(6)=289D=(-13)^2-4(5)(-6)=289

ef=13±2892(5)\dfrac{e}{f}=\dfrac{13\pm\sqrt{289}}{2(5)}

ef=131710=0.4\dfrac{e}{f}=\dfrac{13-17}{10}=-0.4

or


ef=13+1710=3\dfrac{e}{f}=\dfrac{13+17}{10}=3

e:d=2:5e: d=-2:5 or e:f=3:1e:f=3:1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS