Question #206315

solve the following using Gaussian Elimination method 2x + y + 3z = 4 x + y + 2z = 0 2x + 4y + 6z = -8


1
Expert's answer
2021-06-16T12:06:14-0400

{2x+y+3z=4x+y+2z=02x+4y+6z=8(213411202468)(213401212203312)(21340121220000)(11232201140000){x+y2+3z2=2y+z=4{x=2y23z2y=4z{x=4zy=4zz=aAnswer:{x=4ay=4az=a\begin{cases} 2x + y + 3z = 4 \\ x + y + 2z = 0 \\ 2x + 4y + 6z = -8 \end{cases} \rightarrow \begin{pmatrix} 2& 1& 3& 4\\ 1& 1& 2& 0\\ 2& 4& 6& -8 \end{pmatrix} \sim \begin{pmatrix} 2& 1& 3& 4\\ 0& \frac{1}{2}& \frac{1}{2}& -2\\ 0& 3& 3& -12 \end{pmatrix} \sim \begin{pmatrix} 2& 1& 3& 4\\ 0& \frac{1}{2}& \frac{1}{2}& -2\\ 0& 0& 0& 0 \end{pmatrix} \sim \begin{pmatrix} 1& \frac{1}{2}& \frac{3}{2}& 2\\ 0& 1& 1& -4\\ 0& 0& 0& 0 \end{pmatrix} \Rightarrow \begin{cases} x + \frac{y}{2} + \frac{3z}{2} = 2 \\ y + z = -4 \end{cases} \Rightarrow \begin{cases} x = 2 - \frac{y}{2} - \frac{3z}{2} \\ y = -4 - z \end{cases} \Rightarrow \begin{cases} x = 4 - z \\ y = -4 - z \end{cases}z = a\Rightarrow Answer:\begin{cases} x = 4 - a \\ y = -4 - a \\ z = a \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS