solve the following using Gaussian Elimination method 2x + y + 3z = 4 x + y + 2z = 0 2x + 4y + 6z = -8
"\\begin{cases} 2x + y + 3z = 4 \\\\ x + y + 2z = 0 \\\\ 2x + 4y + 6z = -8 \\end{cases}\n\\rightarrow\n\\begin{pmatrix} 2& 1& 3& 4\\\\ 1& 1& 2& 0\\\\ 2& 4& 6& -8 \\end{pmatrix} \\sim \\begin{pmatrix} 2& 1& 3& 4\\\\ 0& \\frac{1}{2}& \\frac{1}{2}& -2\\\\ 0& 3& 3& -12 \\end{pmatrix} \\sim \\begin{pmatrix} 2& 1& 3& 4\\\\ 0& \\frac{1}{2}& \\frac{1}{2}& -2\\\\ 0& 0& 0& 0 \\end{pmatrix} \\sim \\begin{pmatrix} 1& \\frac{1}{2}& \\frac{3}{2}& 2\\\\ 0& 1& 1& -4\\\\ 0& 0& 0& 0 \\end{pmatrix} \n\\Rightarrow \\begin{cases} x + \\frac{y}{2} + \\frac{3z}{2} = 2 \\\\ y + z = -4 \\end{cases}\n\\Rightarrow \\begin{cases} x = 2 - \\frac{y}{2} - \\frac{3z}{2} \\\\ y = -4 - z \\end{cases}\n\\Rightarrow \\begin{cases} x = 4 - z \\\\ y = -4 - z \\end{cases}z = a\\Rightarrow \nAnswer:\\begin{cases} x = 4 - a \\\\ y = -4 - a \\\\ z = a \\end{cases}"
Comments
Leave a comment