We have,
∣∣xa1a2xb1b2111∣∣=0 ⇒x(b1−b2)−y(a1−a2)+b2a1−a2b1=0⇒x(b2−b1)−y(a2−a1)+a2b1−b2a1=0⇒x(b2−b1)+a2b1=y(a2−a1)+b2a1Add a2b2 on both sides, we get⇒x(b2−b1)−a2b2+a2b1=y(a2−a1)−b2(a2−a1)⇒(b2−b1)(x−a2)=(a2−a1)(y−b2) ⇒b2−b1y−b2=a2−a1x−a2
Comments
Leave a comment