Note vector notation: (vector 1;vector 2)
Select the correct answer:
k(k-1) • • • (k-r)(m+1)m• • • 3• 2
_________________________ =
p(p-1)• • • (p-m)(r+1)r• • • 3• 2•
a) (k;r) / (p+1 ; m)
b) (p;r) / (k+1 ; m)
c) (k;r) / (p ; m + 1)
d) (k;r) / (m+1 ; p)
e) (k; r +1) / (p ; m)
f) (k; r + 1) / (p ; m+1)
k(k−1)⋅(k−r)(m+1)mp(p−1)⋅(p−m)(r+1)r\frac{k\left(k-1\right)\cdot \left(k-r\right)\left(m+1\right)m}{p\left(p-1\right)\cdot \left(p-m\right)\left(r+1\right)r}p(p−1)⋅(p−m)(r+1)rk(k−1)⋅(k−r)(m+1)m
=km(k−1)(−r+k)(m+1)r2p3+rp3−r2mp2−rmp2−r2p2−rp2+r2mp+rmp=\frac{km\left(k-1\right)\left(-r+k\right)\left(m+1\right)}{r^2p^3+rp^3-r^2mp^2-rmp^2-r^2p^2-rp^2+r^2mp+rmp}=r2p3+rp3−r2mp2−rmp2−r2p2−rp2+r2mp+rmpkm(k−1)(−r+k)(m+1)
=k3m2+k3m−k2rm2−k2rm−k2m2−k2m+krm2+krmr2p3+rp3−r2mp2−rmp2−r2p2−rp2+r2mp+rmp=\frac{k^3m^2+k^3m-k^2rm^2-k^2rm-k^2m^2-k^2m+krm^2+krm}{r^2p^3+rp^3-r^2mp^2-rmp^2-r^2p^2-rp^2+r^2mp+rmp}=r2p3+rp3−r2mp2−rmp2−r2p2−rp2+r2mp+rmpk3m2+k3m−k2rm2−k2rm−k2m2−k2m+krm2+krm
From the above expression, the answer is d) (k;r) / (m+1 ; p)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments