prove ln(xy)=ln(x)+ln(y)
Prove:\textbf{Prove:}Prove:
Let ln(xy)=c,ln(x)=a,ln(y)=bln(xy)=c, ln(x)=a, ln(y)=bln(xy)=c,ln(x)=a,ln(y)=b, then
ec=xy, ea=x, eb=y.e^{c}=xy, \, e^{a}=x, \, e^{b}=y.ec=xy,ea=x,eb=y.
ea+b=eaeb=xy=ec⇒a+b=ce^{a+b}=e^{a}e^{b}=xy=e^{c}\Rightarrow a+b=cea+b=eaeb=xy=ec⇒a+b=c or ln(x)+ln(y)=ln(xy)ln(x)+ln(y)=ln(xy)ln(x)+ln(y)=ln(xy).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments