Question #193684

1.Divide the polynomials using the division method of your choice (long or synthetic)

3x3 - 4x2 - + 2x -1 / x - 3


2.Perform the indicated operation for the following:

a. (3x2 - 8x + 4) - (6x2 + 7x -1)

b. (4x7 - 3x5 - + 2x + 4) + (12x5 - 3x + 2x2 + 3)

c. (3x + 4)(5x2 - 2x + 3)

d. (3 + 4i) + (1-2i)

e. (2-i) (5-6i)

f. (3-7i) ( 1-2i)


3.Solve x2 + 81= 0


4.Solve 3 square root of 7x = 3


1
Expert's answer
2021-05-17T16:53:07-0400

Calculations


1)

  • For this question refer to the figure attached in which both synthetic & long divisions are performed.


  • The final answer is gained the same in both ways as

3x34x2+2x1(x3)=(3x2+5x+17)+50(x3)\qquad\qquad \begin{aligned} \small \frac{3x^3-4x^2+2x-1}{(x-3)}&=\small (3x^2 +5x+17)+\frac{50}{(x-3)} \end{aligned}


2)

a.=3x28x+4(6x2+7x1)=3x28x+46x27x+1=3x215x+5\qquad\qquad \begin{aligned} \small &=\small 3x^2-8x+4-(6x^2+7x-1)\\ &=\small 3x^2-8x+4-6x^2-7x+1\\ &=\small -3x^2-15x+5 \end{aligned}


b.=4x73x5+2x+4+(12x53x+2x2+3)=4x73x5+2x+4+12x53x+2x2+3=4x7+9x5+2x2x+7\qquad\qquad \begin{aligned} &=\small 4x^7-3x^5+2x+4+(12x^5-3x+2x^2+3)\\ &=\small 4x^7-3x^5+2x+4+12x^5-3x+2x^2+3\\ &=\small 4x^7+9x^5+2x^2-x+7 \end{aligned}


c.=3x(5x22x+3)+4(5x22x+3)=15x36x2+9x+20x28x+12=15x3+14x2+x+12\qquad\qquad \begin{aligned} \small &=\small 3x(5x^2-2x+3)+4(5x^2-2x+3)\\ &=\small 15x^3-6x^2+9x+20x^2-8x+12\\ &=\small 15x^3+14x^2+x+12 \end{aligned}


d.=3+4i+(12i)=3+4i+12i=4+2i\qquad\qquad \begin{aligned} &=\small 3+4i+(1-2i)\\ &=\small 3+4i+1-2i\\ &=\small 4+2i \end{aligned}


e.=(2i)(56i)=1012i5i+6i2=1017i6=417i\qquad\qquad \begin{aligned} &=\small (2-i)(5-6i)\\ &=\small 10-12i-5i+6i^2\\ &=\small 10-17i-6\\ &=\small 4-17i \end{aligned}


f.=(37i)(12i)=36i7i+14(1)=1113i\qquad\qquad \begin{aligned} &=\small (3-7i)(1-2i)\\ &=\small 3-6i-7i+14(-1)\\ &=\small -11-13i \end{aligned}


3)

x2(81)=0x281i2=0(x+9i)(x9i)=0x=±9i\qquad\qquad \begin{aligned} \small x^2-(-81)&=\small 0\\ \small x^2-81i^2&=\small 0\\ \small (x+9i)(x-9i)&=\small 0\\ \small x&=\small \pm9i \end{aligned}


4)

7x3=3(7x3)3=337x=27x=277\qquad\qquad \begin{aligned} \small \sqrt[3]{7x}&=\small 3\\ \small (\sqrt[3]{7x})^3&=\small 3^3\\ \small 7x&=\small 27\\ \small x&=\small \frac{27}{7} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS