Answer to Question #192818 in Algebra for Mal

Question #192818

If f(x)=2x+5 , then the graphs of y=f(x) and y=squareroot f(x) will have two common points.

a. What are the y-coordinates of these common points?

b. Determine the x-coordinates of these common points, and then state the points.


1
Expert's answer
2021-05-13T18:10:55-0400

given

f(x)=2x+5f(x)=2x+5

let g(x)=f(x)=2x+5let\space g(x)=\sqrt{\smash[b]{f(x)}}=\sqrt{\smash[b]{2x+5}}

The graphs of y=f(x)y=f(x) and y=g(x)y=g(x) will intersect at points where f(x)=g(x)f(x)=g(x)

f(x)=g(x)2x+5=2x+5f(x)=g(x)\Rightarrow 2x+5=\sqrt{\smash[b]{2x+5}}

2x+52x+5=0\Rightarrow2x+5-\sqrt{\smash[b]{2x+5}}=0

2x+5(2x+51)=0\Rightarrow\sqrt{\smash[b]{2x+5}}(\sqrt{\smash[b]{2x+5}}-1)=0

2x+5=0,2x+5=1\Rightarrow\sqrt{\smash[b]{2x+5}}=0,\sqrt{\smash[b]{2x+5}}=1

2x+5=0,2x+5=1\Rightarrow2x+5=0,2x+5=1

x=52 , x=2\Rightarrow x=-\frac{5}{2} \space ,\space x=-2


The y-coordinates are

x=2y=2x+5=1x=-2\Rightarrow y=\sqrt{\smash[b]{2x+5}}=1

x=52y=2x+5=0x=-\frac{5}{2}\Rightarrow y=\sqrt{\smash[b]{2x+5}}=0

Hence, the x-coordinates of the points of intersection are x=52,2x=-\frac{5}{2},-2

Hence, the x-coordinates of the points of intersection are y=0,1y=0,1

The points of intersections are (2,1)(-2,1) and (52,0)(-\frac{5}{2},0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment