If f(x)=2x+5 , then the graphs of y=f(x) and y=squareroot f(x) will have two common points.
a. What are the y-coordinates of these common points?
b. Determine the x-coordinates of these common points, and then state the points.
given
"f(x)=2x+5"
"let\\space g(x)=\\sqrt{\\smash[b]{f(x)}}=\\sqrt{\\smash[b]{2x+5}}"
The graphs of "y=f(x)" and "y=g(x)" will intersect at points where "f(x)=g(x)"
"f(x)=g(x)\\Rightarrow 2x+5=\\sqrt{\\smash[b]{2x+5}}"
"\\Rightarrow2x+5-\\sqrt{\\smash[b]{2x+5}}=0"
"\\Rightarrow\\sqrt{\\smash[b]{2x+5}}(\\sqrt{\\smash[b]{2x+5}}-1)=0"
"\\Rightarrow\\sqrt{\\smash[b]{2x+5}}=0,\\sqrt{\\smash[b]{2x+5}}=1"
"\\Rightarrow2x+5=0,2x+5=1"
"\\Rightarrow x=-\\frac{5}{2} \\space ,\\space x=-2"
The y-coordinates are
"x=-2\\Rightarrow y=\\sqrt{\\smash[b]{2x+5}}=1"
"x=-\\frac{5}{2}\\Rightarrow y=\\sqrt{\\smash[b]{2x+5}}=0"
Hence, the x-coordinates of the points of intersection are "x=-\\frac{5}{2},-2"
Hence, the x-coordinates of the points of intersection are "y=0,1"
The points of intersections are "(-2,1)" and "(-\\frac{5}{2},0)"
Comments
Leave a comment