A semi-circle of radius 14 cm is formed from a piece of wire. If it is bent into a rectangle whose length is 2 cm more than its width, find the area of the rectangle.
"\\text{\nperimeter of semi circle}=(2+\\pi)r=(2+\\pi)\u00d714=71.9823 cm\\newline\\text{\nGiven, length of rectangle(l) is 2cm more than its width(b).}\\newline\nl=2+b\\newline\\text{\nperimeter of rectangle}=2(l+b)\\newline\\text{\nGiven, perimeter of semi circle=perimeter of rectangle}\\newline\n(2+\\pi)\u00d714=2(l+2+l)\\newline\n(2+\\pi)\u00d714=4(l+1)\\newline\nl+1=\\frac{(2+\\pi)\u00d714}{4}\\newline\nl=\\frac{(2+\\pi)\u00d714}{4}-1\\newline\nl=16.9956 cm\\newline\\text{\nTherefore, width of rectangle is }18.9956 cm.\\newline\n\\text{Area of the rectangle}=lb=16.9956\u00d718.9956=322.8416 cm^2"
Comments
Leave a comment